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an 
PREFACE 

R222 

Tue necessarily increased air-mindedness of the present generation is 
making a technical acquaintance with the subject of spherical trigo- 
nometry of practical importance. To know the nature and methods of 
solution of “course and distance” problems is as significant a part of 
the mental equipment of the student today as to know how to find 
heights of distant objects and distances of inaccessible places in plane 
trigonometry. 

The cultural applications of spherical trigonometry have always been 

important. Anyone professing curiosity concerning the phenomena of 

the universe about him should list as of fundamental importance a 

working knowledge of the motions of the earth as a basis for understand- 

ing systems of time measurement and methods of fixing positions on 

the earth’s surface. : 

The teaching of spherical trigonometry has suffered from two extreme 

points of view. On the one hand, because there are many different ways 
of solving general spherical triangles, it has been assumed that all 

methods must be developed and no one method emphasized. This 

has necessitated the teaching of numerous complicated formulas whose 

use is confined solely to spherical trigonometry. On the other hand (and 

partly because of the above), the need for the rapid solution of certain 

typical spherical triangles in navigation has made necessary the employ- 

ment of some entirely formal method. Several such methods,* based 

almost entirely on the proper manipulation of specially prepared tables, 

will quickly solve a navigator’s problems without conscious reference to 

the geometrical concepts of spherical trigonometry. ‘This is, of course, 

as it should be; decisions at sea and in the air must be based on the facts 

of the ship’s position, and the facts must be found at once. But to 

* The following publications contain the most frequently used tabular methods of 

navigation. The abbreviation ‘‘H.O.” indicates a publication of the Hydrographic 

Office, United States Navy Department. 

Tables of Computed Altitude and Azimuth. H.O. 214. Devised by Commander R. H. 

Knight, U.S.N. (Ret.) and Commander R. E. Jasperson, U.S.N. Washington, IDMGFE 

Government Printing Office, 1939-1941. e 

Dead Reckoning Altitude and Azimuth Table. H.O. 211. Devised by Commander 

A. A. Ageton, U.S.N. Washington, D.C.: Government Printing Office, 1940. 

Navigation Tables for Mariners and Aviators. H.O. 208. Devised by Commander 

J. Y. Dreisonstok, U.S.N. (Ret.). Washington, D.C.: Government Printing Office, 1942. 

Cosine-Haversine Formula of Marcq Saint-Hilaire. H.O. 171. Washington, D.C.: 

Government Printing Office, 1915. 

- Star Altitude Curves. Devised by Lieutenant Commander P. V. H. Weems, U.S.N. 

(Ret.). Annapolis, Maryland: Weems System of Navigation, 1938. 
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advocate teaching at the outset one of the several excellent formal meth- 

ods of solution of navigation triangles without any previous instruction 

in the concepts and principles of spherical trigonometry would be analo- 

gous to teaching integration directly and solely by means of integral 

tables. 
Granting then that the study of any of the formal methods of solving 

certain spherical triangles should be preceded by a course in spherical 

trigonometry, the necessity of developing all possible methods of the 

mathematical solution of spherical triangles does not follow. One 

method, the fundamental right spherical triangle method, will solve 

all spherical triangles with certainty, completeness, and simplicity. 

By this method all the fundamental concepts of spherical trigonometry 

can be amply demonstrated and emphasized. Accordingly, in the text 

proper the solution of all spherical triangles is accomplished by the one 

fundamental right triangle method. ‘The student’s gain in not having 

‘ to derive many intricate formulas, which are of no value outside of 
spherical trigonometry, is immensely greater than any loss from a 

possible slight increase in computation. Solving general spherical tri- 

angles by dropping a perpendicular clarifies the student’s geometrical 

conception of the various possible aspects of spherical triangles. The 

student can reasonably be held responsible for the derivation of all 

formulas necessary for the solution of any triangle (an unreasonable 

point of view in the case of the several special methods). For the 

student who might be particularly interested in special methods of 

general triangle solution, Appendix II is provided. Here the usual 

formulas necessary for these special methods are derived with as much 

motivation as possible. The relative merits of all solutions are briefly 
discussed. 

By having presented to him essentially but one method of solving 

all spherical triangles (namely, the Napier’s Rules solution of right 

spherical triangles), the student can be expected to base this one method 

firmly upon his solid geometry. This the present text facilitates by 

listing in the Introduction all the solid geometry definitions and theo- 

rems which are in any way involved in the following treatment of 

spherical trigonometry. Each concept is represented by a sketch, and 

the proofs of theorems are briefly outlined. References to specific 
parts of the Introduction are made at the appropriate points in the 
text.* Spherical trigonometry is much more closely related to solid 
geometry than to plane trigonometry, from which it need borrow only 

* Sections 7 and 8 of Part A of the Introduction contain material which does not ap- 
pear in the usual solid geometry syllabus. 
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the definitions of the six trigonometric functions and their five interrela- 
tions which are rational. For this reason spherical trigonometry can 
logically be presented apart from plane trigonometry, provided it is ade- 
quately based upon solid geometry. All the material in plane trigo- 
nometry needed in the text proper and in the appendixes is given in the 
Introduction following the solid geometry references. 

The chapters on terrestrial applications and celestial applications are 

given considerable space. Not only do these chapters present the im- 

portant applications of spherical triangle solution, but the concepts 

therein discussed are of cultural importance to any layman. The 

experience of the author has abundantly indicated that the college or 

high school student has very confused and inexact ideas about such 

simple concepts as the small-circle distance between two points on the 

earth’s surface in the same latitude, and the distinction between sidereal 

and solar time. The grammar-school course in geography is too far 

in the student’s past and was necessarily too elementary to provide 

him with a permanently satisfactory grasp of the geometrical aspects 

of the earth’s surface and the earth’s motions in the heavens. These 

chapters on terrestrial and celestial applications can well be assigned 

for supplementary reading while the technique of triangle solution is 

being developed. 
In brief, the following are the aims of the present text on spherical 

trigonometry: 

1. To base the subject firmly upon solid geometry by means of refer- 

ences to solid geometry in the Introduction; 

2. To present one method of solving all spherical triangles, 7.e., the 

right triangle method. This method can then be easily remembered 

and thoroughly mastered. It will never lead to uncertainties; 

3. To demand of the student an arbitrary system of computation in the 

interest of clarity and accuracy; 

4. To provide completely worked-out examples as guides for the solu- 

tion of assigned problems;f 
5. To place all material not essential for the first reading of the subject 

in the appendixes and to include in the appendixes all material about 

which the student might reasonably be curious. Special methods 

of general triangle solution, a complete discussion of ambiguous 

cases, instruments used in observing the data of spherical trigonometry 

problems, and almanacs are considered in this category; 

6. To provide, in the chapters on terrestrial and celestial applications, 

+ Bowditch Tables [Useful Tables: U.S. Hydrographic Office] have been used in this 

text. 
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a reasonable discussion of the culturally important subjects of the 

earth’s surface-geometry and the motions of the earth in the heavens, 

The illustrations and diagrams of some of the navigation instruments 

described in Appendix III were drawn from photographs supplied by the 

following firms: 

Keuffel and Esser Company of Hoboken, New Jersey — sextant and 

transit with solar attachment; 
Bausch and Lomb Optical Company of Rochester, Micgr York — bub- 

ble octant; 

T. S. and J. D. Negus of New York, New York — azimuth circle; 

Kelvin-White Company of Boston, Massachusetts — magnetic com- 

pass. 
This courteous helpfulness has materially simplified the writing of this 

appendix and is greatly appreciated. 
A very considerable part of the satisfaction in this enterprise is 

identified with the stimulation and generous help of many friends. 

Captain 8. P. Fullinwider, U.S.N., Head of the Department of Mathe- 

matics at The Naval Academy, has been an encouraging and informa- 

tive adviser on sources of technical information. Captain J. F. Hellweg, 

U.S.N., Retired, Superintendent of The Naval Observatory, has sanc- 

tioned the inclusion of the appendix on the Nautical Almanac and the 

Air Almanac and has helpfully advised on the Star Chart. Lieutenant 

Commander Paul Miller, U.S.N., Retired, has expertly advised on in- 

numerable matters pertaining to navigation. The same has been true 

of Associate Professor William A. Conrad in the details of astronomy. 

To these two specialists the author is particularly indebted for help in 

properly dealing with the applications of spherical trigonometry. Among 

a host of other helpful colleagues Mr. Walton H. Sears, Jr. is to be singled 

out for his many resourceful suggestions and for his painstaking interest 

in reading proof and in improving the accuracy of the illustrative exam- 
ples and problems. 

JACcQuES HAMMOND 
ANNAPOLIS, MARYLAND 
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Introduction 

1. Explanation 

The following is a development of the concepts and theorems of solid 

geometry and plane trigonometry which are necessary for a complete 

understanding of spherical trigonometry. This introductory review is 

important in so far as it aids in understanding the chapters which fol- 

low. References are made to specific parts of this Introduction at 

appropriate points in the text. Consequently, the student (unless nota- 

bly unfamiliar with the geometry of three dimensions, particularly as 

applied to the sphere, and the fundamentals of plane trigonometry) can 

well skip this Introduction for the present and refer to it when and as it 

becomes necessary. 

A. DEFINITIONS AND THEOREMS FROM SOLID GEOMETRY 

2. Planes; Parallel Planes 

a. DETERMINATION: A plane is determined by three points, by two 

intersecting lines, by a line and a point not on the line, or by two parallel 

lines. (See Figure 1.) 

eT Fj 
FIGuRE 1 

b. REPRESENTATION: A plane is infinite in extent in all directions, 

but is conveniently pictured as a parallelogram. 

c. DEFINITION: Two planes are parallel planes if they do not intersect 

no matter how far extended. (See Figure 2.) 

d. Construction: Through a given point not in a given plane to con- 

struct the unique plane parallel to the given plane. (See Figure 3.) 

(1) z and y are any two lines in P, the given plane. 
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Ge 

FIGURE 2 FIGURE 3 

(2) X and Y are the planes determined by the given point O and the 
lines x and y, respectively. 

(3) 2’ and y’ are lines through O in X and Y, respectively, parallel to z 
and y, respectively. 

(4) The required plane Q is the plane of x’ and y’. Suppose Q should 
meet Pinalinez. Then z would cut z or y, say x. Let Z be the supposed 
intersection of line z with line x. Then point Z must be in the plane X and 
in the plane Q. Hence Z would be on the line 2’, the line of intersection of 

the planes X and Q. Therefore, x’ would intersect z in the point Z. But 
callie 

3. Line and Plane Perpendicular 

a, DerrniTion: A line and plane shall be said to be mutually perpen- 

dicular when the line is perpendicular to all lines which are in the plane 

and which pass through the point of intersection of the line and the 

plane. 

In Figure 4 if the line & 1 plane P at point O, then all the angles at O 
between k and lines in P are = 90°, and conversely. 

b. THEOREM: A line and a plane are mutually perpendicular when the 

FIGurE 4 
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line is perpendicular to any two lines which are in the plane and which 
pass through the point of intersection of the line and the plane. (See 
Figure 5.) 

(1) In the figure X AOB = X. AOC = 90°. To prove that any other 
angle, such as AOD, where OD is also in plane P, is 90°. 

(2) Extend AO its own length to A’. OD is any line in P through O 
not identical to the two given lines OB, OC. BDC is any line in P cutting 
OB, OD, and OC in B, D, and C, respectively. 

(3) A AOB =A A’OB and A AOC &A A’OC by s.a.s. (side, angle, side) 
by hypothesis and construction. 

(4) A ABC =A A’BC by sss. from (3). 
(5) A ABD &A A’BD by s.a.s. from (3) and (4). 
(6) A AOD ~A A’OD by s.s.s. from (2) and (5). 
(7) 4 AOD = X A’OD = 90°. 

c. THEOREM: A line perpendicular to 

one of two parallel planes is perpendicu- 

lar to the other plane. (See Figure 6.) 

In the figure, plane P || plane Q and 
line h 1 P at point H. Let x, y be any 
two lines in P through H. Let 2’, y’ be 
the lines in which plane Q intersects the 
planes determined by / and z and hand y, 
respectively. Then z’ || z and y’ || y, as 
the lines of each pair are in a plane and FIcure 6 
never meet, since they lie in parallel planes. 
.. 2’ and y’ are each 1 h, as a line in the plane of two parallel lines and L 
one of themis | theother. «.h1Q,by 306. 

d. ConstrRucTION: Through a given point to construct the unique 

plane perpendicular to a given line (1) when the given point is on the 

given line, (2) when the given point is not on the given line. 

(1) In Figure 7 a, pass any two planes through the given line k. In each 

k 

Lad rN 

(a) Y 
FIGuRE 7 
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of these two planes construct the perpendicular to k at the given point O 

on k. The plane of these two perpendiculars is the required plane. 

(2) In Figure 7 6, construct the plane P determined by the given line 

and point. In this plane drop a perpendicular from the given point O to 

the given line k, intersecting k at O’. Pass any other plane P’ through k. 

In P’ construct the perpendicular 0’O” to k at O’. The plane of the lines 

00’, O’O” is the required plane. 

(6) 
FIGURE 8 

e. CONSTRUCTION: Through a given point to construct the unique 

line perpendicular to a given plane (1) when the given point is in the 

given plane, (2) when the given point is not in the given plane. 

(1) In Figure 8 a, a and b are any two lines drawn in the given plane P, 
and through the given point O. A and B are the unique planes constructed 
perpendicular to lines a and 6, respectively, at O. Line k is the intersection 
of planes A and B and is the required line, since, by construction, it makes 
90° angles with lines a and 6 in plane P at O. 

(2) In Figure 8b, plane Q is constructed, by 2 d, parallel to the given 
plane P, and through the given point O. Then line & is constructed per- 
pendicular to Q at O, by 3e (1). Then kis perpendicular to P, by 3c. 

f. THtorEM: The locus in space of points equidistant from the ex- 

tremities of a line segment is the plane perpendicularly bisecting the 
line segment. 

(1) In Figure 9, P is given on the per- 
pendicularly bisecting plane. Then 
XP = YP, by triangles congruent by 
8.8.8. es 

(2) P’ is given equidistant from X "| jas 
and Y. Then the angles at M are 
equal and equal 90°, by triangles con- 
gruent by s.s.s. Hence, P’ is in the 
perpendicularly bisecting plane. Figure 9 
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4, Intersecting Planes 

a. Derinition: A dihedral angle is any one of the four openings be- 
tween two intersecting planes. The planes are called the faces of the 
dihedral angle. The line of intersection of the faces is called the edge 
of the dihedral angle. (See Figure 10.) 

he 
face 

face 

Figure 10 FicureE 11 

b. DEFINITION: The plane angle of a dihedral angle is the plane angle 

formed at any point on the edge of the dihedral angle by two inter- 

secting lines, one in each face of the dihedral angle, and each perpen- 

dicular to the edge at this point. The plane angle obviously measures 

the opening between the two planes, and, hence, the measure of the 

dihedral angle is defined as the measure of its plane angle. (See Figure 

11.) 

c. THEOREM: All planes containing a line perpendicular to a given 

plane are themselves perpendicular to the given plane. 

In Figure 12, line & is given perpendicular to the plane P. FR is any plane 
containing & and meeting plane P in the line a. At the point O, the inter- 
section of the line & and plane P, the line } is drawn in P and perpendicular 
to line a. Then line k is perpendicular to lines a and b. The angle between 

FIiGure 12 FiGcureE 13 
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6 3. POLYHEDRAL ANGLES 

& and 6 js the plane angle of the dihedral angle between P and RF and is 

equal to 90°, 

& Trrorext: Through a given line not perpendicular to a given plane 

to construct the unique plane perpendicular to the given plane, (Gee 

Figure 18) 

From any point on the given line & construct the unique perpendicular 

to the given plane P. The required plane Q is the plane determined by this 

constructed perpendicular and the _iven line &, by 4c, 

e Trroren: If two planes are perpendicular, then any line in one 

of them perpendicular to the line of intersection of the two planes is 

perpendicular to the other plane, (See Figure 14.) 

Given that planes P and Q are perpendicular and that the line & in Q is 
perpendicular to the line @, the intersection of P and Q. At point O, the 
intersection of & and P, and in P draw the line 6 perpendicular to a. Then 
the angle of £ and } equals 90°, as it is the plane angle of the dihedral angle 
of P and Q, whieh is given equal to 90°, 

Rreuns 4 Frevres 15 

J. Trsorew: The line of intersection of two planes, each perpendicular 
to a third plane, is itself perpendicular to this third plane. (See Figure 
1) 

Planes Q and FR are given 1 plane P and meet P in lines a and 8, re 
spectively, Line & is the intersection of planes Q and R. Let X be any 
pointon & (but notin), Through JY draw line &’ and line #” 1 respectively 
to @and & Then both & and &” are 1 P by 46, as & is in Q and &” in R. 
Since there is but one perpendicular to a plane from a point (XY), = &” 
and therefare 2 lies also In 8 as well asin Q. Hence, # = b” & & which is 
therefore 1 P. : 

5. Polyhedral Angles 
a, Dsrexrrton: When three or more planes intersect so that (1) they 

have one and only one point in common, and (2) they intersect some 
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6. GREAT CIRCLES ON A SPHERE 7 

other plane in a convex polygon, then the opening at the common point 
of the planes in the direction of the plane of the convex polygon is 
called a convex polyhedral angle. When the nuraber of intersecting 
planes is three, a convex trihedral angle or @ trihedral angle is formed. 
The common point is called the vertex of the polyhedral angle; the plane 

_ angles at the vertex are called the face angles of the polyhedral angle; 
the angles between the planes, the dihedral angles of the polyhedral 
angle; and the intersections of the planes or faces, edges. 

Ficure 16 Ficure 17 Ficune 1% 

b. ToEoreM: The sum of two face angles of a trihedral angle is greater 
than the third face angle. 

In Figure 17, angle 3> angle 2. In the face of angle 3 angle DOP is 
constructed equal to angle 2 and OD is made equal to OC. A, B are inter- 
sections with the edges OA, OB, respectively, of some plane through C 
and D. Then BD = BC, as triangles BOD, BOC are congruent, by 4.44. 
AB < AC+CB, and, therefore, AD< AC. Hence, angle AOD < angle 1, 
by plane geometry. Therefore, angle 3 < angle 2+ angle 1. 

c. THEorEM: The sum of the face angles of any convex polyhedral angle 
is less than two straight angles. 

In Figure 18, ABCDE is the convex polygon formed by the faces of the 
polyhedral angle cutting some other plane. O is an interior point of this 
polygon. Now, the sum of the angles of the triangles with vertices at O 
equals the sum of angles of the triangles with vertices at 0’. But, by the 
above theorem, 4 ABO+ 4 CEBO> Z ABC, ee. Hence, the sum of 
the angles not at O of triangles with vertices at O > the sum of the angles 
not at O’ of triangles with vertices at O’. Therefore, the sum of angles at 
O of triangles with vertices at O < the sum of angles at O of triangles with 
vertices at O’ = 360°. 

6. Great Circles on a Sphere, Pole, and Polar 

a. Derinitions: The circle of intersection of a plane and a sphere 

is called a great circle (Figure 19 a) if and only if the plane of inter- 
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section contains the center of the sphere, and a small circle (Figure 19 b) 

when this is not the case. 

Se, 

(b) 
FIGuRE 19 

b. Dermitions: When two great circles of a sphere intersect, any one 

of the four openings on the sphere at the point of intersection and be- 

tween the two great circles is called a spherical angle. The measure of 

the spherical angle is the measure of the dihedral angle of the planes of 

the two great circles. Those portions of the surface of the sphere lying 

between halves of each great circle are called lunes. 

FIGURE 20 FIGURE 21 

In Figure 20, C; and C2 are two great circles intersecting at A. The 
spherical angle A is marked with the curved arrow. OA (O is the center 
of the sphere) is the edge of the dihedral angle of the planes of the two circles 
C1, Cs, and ty, t2 are the tangents at A to C, C2, respectively. Then spherical 
angle A = dihedral angle C; — OA — C2 = plane angle t,Ate. 

c. THEOREM: Two great circles intersect one another at the same re- 
spective angles at two diametrically opposite points. 

Since by definition great circles are formed by planes through the center 
of the sphere, the planes of the two great circles must intersect in a diameter 
at opposite ends of which the great circles intersect one another. The angles 
at one point of intersection are equal to the respective angles at the other 
point, because each member of a pair of respective angles is measured by the 
dihedral angle of that pair. (See Figure 21.) 
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d. Drrinitions: A pole of a great-circular are is either one of the two 
points at which the sphere is pierced by the diameter perpendicular to 
the plane of the great-circular are. 

In Figure 22, P and P’ are each poles of the great circle C. 

The polar great circle of a given point on a sphere is the great circle of 
which the given point is a pole, or it is the great circle in which the sphere 
is cut by the diametral plane perpendicular to the diameter through 
the given point. 

In Figure 22, C is the polar great circle of each of the points P and P’. 

FIGURE 22 Ficure 23 

e. THEOREM: The polar of a point on a sphere is the locus on the 
sphere of all points 90° of arc (measured on great circles) from the 
given point. 

(1) In Figure 23, pis the polar of P and its diametrically opposite point P’. 
Hence, 7p is in the plane perpendicularly bisecting PP’. Hence, all central 
angles between either P or P’ and any point on p= are right angles, as are the 
corresponding great-circular arcs subtended by these central angles. 

(2) If a point A on the surface of the sphere is 90° of arc from either P or P’, 
it is also 90° of arc from the other of these two diametrically opposite points 
P and P’. Hence, A is equidistant from P and P’ and therefore, by 3f, 
in the plane perpendicularly bisecting PP’, which plane intersects the sphere 
in the polar, p, of P. 

f. TaeorEM: All great circles through a given point cut the polar of 

the given point perpendicularly. 

In Figure 24, PO is 1 plane of polar of P, by definition of pole. Hence, 

also planes of great circles through P are | this plane, by 4c. 

g. THEOREM: The intersections of the polars of two points on a sphere 

are poles of the great-circular arc between the two points. 
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Le 
Figure 24 | FIGURE 25 

In Figure 25, A is one point of intersection of p and q, the polar arcs of 
points P and Q, respectively. Hence, A is 90° of are from both P and Q, 
or P and Q are each 90° of arc from A. Therefore, by 6 e, P and Q are each 
on the polar arc of A. But P and Q in general determine but one great 
circle, which is therefore the great circle polar to A. 

h. THeoreEm: A point 90° of great-circular are from each of two points 

(not at opposite ends of a diameter of the sphere) of a given great circle 

is a pole of the given great circle. 

In Figure 26, arcs PA,-PB are given 90°. Hence, angles POA, POB are 
right angles. Hence, by 3b, PO 1 the plane of the given great circle of A 
and B. Hence, P is a pole of this given great circle, by definition of pole 
and polar. 

Cae 

FIGuRE 26 FIGURE 27 

7. THEOREM: Two great circles, each perpendicular to a third great 
circle, intersect one another in the poles of this third great circle, and 
hence all great circles perpendicular to a given great circle pass through 
its pole. (See Figure 27.) 

The planes of the two great circles perpendicular to the third great circle 
are each perpendicular to the plane of this third great circle, by 6b. Hence, 
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by 4 f the diameter of the sphere common to these two planes is also per- 
pendicular to the plane of the third great circle, and will therefore intersect 
the sphere in the poles of this third great circle, by 6 d. 

j. THxoreEM: A spherical angle has the same measure as that portion 
of the arc of the polar of its vertex which is included between the sides 
of the angle. 

In Figure 28, XY is that portion of the are of the polar of A which is 
subtended by the sides of the spherical angle at A. But XY has the same 
measure as the angle at the center of the sphere formed by the radii to X 
and Y. These radii are perpendicular to the radius to A, because A is 
the pole of XY. Hence, this central angle subtended by XY is equal to 
the plane angle of the dihedral angle of the spherical angle A. 

FIGURE 28 Figure 29 

k. THrorEM: The poles of a great circle lie on the polar of any point 

on it, or, if one great circle contains the pole of a second, then the second 

great circle contains the pole of the first. 

In Figure 29, u is a given great circle, R is any point on u, and r is the 
polar or R. Let S be any other point on uv. Let the polar s of S intersect r 
in U. Then, by 6g, the polar of Uisu. Hence, the pole of wis U, which, 
therefore, lies on the polar of R. 

7. Small Circles on a Sphere * 

a. Derrnition: A small circle on a sphere is the intersection with the 

sphere of a plane not through the center of the sphere. (See Figure 19 b.) 

* As previously mentioned in the Preface, sections 7 and 8 contain material which does 

not appear in the usual solid-geometry syllabus. They are included here because of 

their indispensability in explaining the solar attachment to the transit (cf. Appendix III, 

section 36). This instrument, though not often used, is interesting because it demon- 

strates automatically some of the fundamental applications of the celestial sphere. The 

material of these two sections, moreover, can justly be considered significant per se. The 

interested student will quickly perceive the plane-geometry analogues that exist for 

many of the concepts and theorems discussed in these sections. 
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b. Derinition: The pole of a small circle of a sphere is the nearer 

extremity of the sphere’s diameter which is perpendicular to the plane 

of the small circle. 

c. THEOREM: If two small circles on a sphere intersect in two points, 

these two points symmetrically straddle the great circle through the 

poles of the small circles. 
(1) In Figure 30, ci, ¢2 are the small 

circles meeting in X and Y, and Pi, Pe 
are the respective poles of ci, co. C is the 
great circle through P; and P». 

(2) Plane of C is 1 planes of c; and cs, a ES 
by 4c and 7 6. 

(3) Plane of Cis 1 XY, by 4f. 
(4) Plane of C perpendicularly bisects 

XY, by 3f and 3d, since O is equidistant 
from X and Y. 

(5) Therefore, C is symmetrically strad- 
dled by X and Y, by 3f and by the fact 
that equal chords of a sphere subtend 
equal great-circular arcs of the sphere. Ficure 30 

d. DEFINITION: A point on a sphere will be said to be outside a given 

small circle on the sphere, if it is on the larger of the two unequal parts 

of the sphere defined by the small circle. 

8. Tangent Lines and Tangent Circles on a Sphere * 

a. DEFINITION: A straight line tangent to a circle, great or small, on 

a sphere will be said to be tangent to the sphere at the point of tangency 

with the circle. (See Figure 31.) 

b. THrorEM: A tangent to a 

sphere touches the sphere in one 

and only one point. 

(1) The tangent to the sphere 
cannot touch the sphere again on 
the circle to which it is tangent, by 
definition of a line tangent to a 
circle. 

(2) The tangent cannot touch Figure 31 
the sphere at any point on the 
sphere not on the circle of tangency, as the tangent lies in the plane of this 
circle which is the locus of points common to the plane and the sphere. 

c. Drrrnition: Two circles on a sphere and passing through a point A 
on the sphere will be said to be circles tangent to one another at the 

* See note on page 11. 
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point A if the two circles possess a common tangent, a tangent to the 

sphere, at the point A. (See Figure 31.) 

d, THEOREM: The line of intersection of the planes of two tangent 

circles on a sphere is the line of common tangency. 

Since the common tangent lies in the plane of each circle, it must be the 
line of intersection of the planes of the two circles. 

e. THEOREM: Tangent circles on a sphere have no point other than 
the point of tangency in common. 

Points common to the two circles must lie in the planes of the two circles 
and therefore on the line of intersection of these two planes. Since, by 8 d, 
this line of intersection is the common tangent, it has no point other than the 
point of common tangency in common with either circle. 

f. Construction: To construct the two great circles tangent to a 

given small circle and through a given point on the sphere, which point, 

together with its diametrically opposite point, is outside the given small 

circle. 

FIGURE 32 FIGURE 33 

(1) Given, in Figure 32, the small circle c on the sphere, and the point A, 

also on the sphere. A and its diametrically opposite point A’ are outside c. 

To construct the two great circles through A tangent to c: ee, 

(2) The extended diameter of the sphere through A and A’ will either 

meet the plane of c in a point B outside the sphere, or this diameter will be 

parallel to the plane of c. Assume first the former case: 

(3) From B draw in the plane of c the two tangents ty ty to ©, having Xe 

and Y, respectively, as points of tangency. The required great circles, 

C; and (2, are those in the central planes through t; and tz, respectively. 

(4) By construction, f; and tf, are tangent to c, and therefore to the sphere 

at X and Y, respectively. 

(5) Hence, f; and t2 are tangent to Ci and C», respectively, as the tangents 
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are in the planes of their respective great circles and have with these circles 

no other point in common besides X and Y, respectively. 

(6) Then Ci and C2, having respective common tangents with c, are 

tangent toc. Cand C: pass through A, since, by construction, the central 

planes through ft, tz are the planes determined by h, ¢2, respectively, and 

AOA’. 
(7) Assuming now that AA’ is parallel to the plane of c (see Figure 33), 

pass the plane K through AA’ and the center of c, cutting the plane of c 

in the diameter d of c, which is parallel to AA’. Then let t; and tz be the 

two tangents to c which are parallel to d. Then C; and C2 are the great 

circles in the planes determined by AA’ and ¢; and tz, respectively, by reason- 

ing similar to that for the first case. 

g. THEoREM: A great circle tangent to a small circle is perpendicular 

to the great circle from the pole of the small circle to the point of tan- 

gency. 

(1) In Figure 34, the great circle C; is 
tangent to the small circle c at point X 
and t is the common tangent at X to C; and 
c. Cis the great circle through X and P, 
the pole of c. 

(2) Then the plane of C2 1 the plane of 
c, by 4c. Let oX be the intersection of 
these two planes. 

(3) Since t 1 Xo, tis 1 the plane of C2, 
by 4e. 

(4) Since the plane of C; contains f¢, 
this plane of C; is 1 the plane of Co, by 
4c, F 4 

(5) Hence, C1 1 C2. sg 

9. Spherical Triangles, Polar Triangles 

a, Dertnirion: Any three-sided, closed, curvilinear figure on a sphere, 

bounded by minor ares of three great circles (which do not intersect in 

the same pair of points), between consecutive points of intersection, is 
called a spherical triangle. 

In Figure 35, great circles Ci, C2 intersect in the round dots, C;, C; in the 
square dots, and C2, C; in the triangular dots. Any curvilinear triangle, 
such as ABC, which has as vertices one dot of each kind and as sides a minor - 
great-circular arc of each of the three great circles Cy, C2, C3 between these 
vertices is a spherical triangle. 

Note: Arcs of smail circles cannot (by definition) serve as sides of a spheri- 
cal triangle. Figures so formed look like spherical triangles but are specifi- 
cally excluded from this category by definition. Triangles whose sides are 
ares of small circles can be dealt with, but not by methods applicable to 
spherical triangles. 
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FIGURE 35 FIGURE 36 

6. Derinitions: The angles of a spherical triangle are spherical angles 

and are therefore measured in degrees of angle. The sides of a spherical 

triangle are minor arcs of great circles and are measured in degrees of 

arc. By joining the vertices ABC of the spherical triangle to the 

center O of the sphere there is formed the corresponding trihedral angle 

of the spherical triangle. (See Figure 36.) The vertex of the trihe- 

dral angle is at O and the three faces of the trihedral angle are the 

planes of the sides of the spherical triangle. Hence, the face angles 

of the trihedral angle (angles AOB, AOC, BOC) have the same meas- 

ure as the corresponding sides of the triangle. 

c. DEFINITION: Given a spherical triangle ABC. The great circle of 

side a divides the sphere into two hemispheres, in but one of which 

vertex A lies. Since the polar ares of vertices B and C intersect at 

diametrically opposite points, only one of these two points of intersec- 

tion can lie in that one of the two hemispheres determined by the 

side a in which vertex A lies. Call this point A’. Proceed in an analo- 

gous way to construct B’ and C’. Then the spherical triangle A’B’C’ 

is called the polar triangle of the spherical triangle ABC. (See Figure 37.) 

FIGURE 37 FIGURE 38 
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d. TurorEm: If A’B’C’ is the polar triangle of ABC, then ABC is the 

polar triangle of A’B’C’. 

This follows from the above definition and theorem 6 g. 

e. Derrinition: The two triangles of definition 9 c and theorem 9 d are 

said to be pole and polar and are conventionally labeled to suggest cor- 

responding parts A, A’; b, b’, etc. That is, A’ is the pole of side a 

which is opposite vertex A; b’ is the polar of vertex B which is opposite 

b; etc. 
f. TurorEm: A side of a spherical triangle is the supplement of the 

angle opposite the corresponding side in the polar triangle; an angle 

of a spherical triangle is the supplement of the side opposite the cor- 

responding angle in the polar triangle; or 

A +a’ = 180°; 6+ B’ = 180°; ete. 

In Figure 38, sides c and 6 of triangle ABC are extended away from A 
until they meet side a’ of the polar triangle A’B’C’ in X and Y, respectively. 
Then arc AX = arc AY = arc B’Y = are C’X = 90°, by 6 e. Furthermore, 
arc XY has the same measure as angle A, by 67. Therefore, a’ = are B/C’ = 
arc B’Y + are XC’ — are XY = 90° + 90° — A = 180° — A. 

g. THEOREM: The sum of two sides of a spherical triangle always 
exceeds the third side; ora +b>e. 

In Figure 39, the trihedral angle corresponding to the spherical triangle 
is drawn. The face angles of this trihedral angle have the same measures 
as the respective sides of the triangle. The theorem is therefore established 
by 5 6. 

Figure 39 Figure 40 

h. TurorEM: The sum of the three sides of a spherical triangle is 
always less than 360°; ora +b+c < 360°. 

In Figure 40, the trihedral angle corresponding to the spherical triangle 
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is drawn. The face angles of this trihedral angle have the same measures 
- the respective sides of the triangle. The theorem is therefore established 
y 5c. 

?. THEOREM: The sum of the three angles of a spherical triangle is 
_ always greater than one and less than three straight angles; or 180° < 
At B+C < 540°. 

From theorem 9 f, A+ B+C = 540° — (a’ +b’ +c’) 
Since a’ + b'+¢c’>O0, A+B+4+C < 540°. 
Since a’ + b’ + c’ < 360° by the above theorem, A + B + C > 180°. 

j. THEOREM: The order of magnitude of the sides of a spherical tri- 
angle is the same as the order of magnitude of the corresponding angles 
opposite the sides; or, 

if A<B<C, thena<b<e, 
and reciprocally, 

tone <6¢ then AZ B =< CG. 
The proof as given in spherical geometry follows from two applications 

of the 

THEOREM: If two angles of a spherical triangle are unequal, the sides 

opposite the unequal angles are unequal, and unequal in the same sense. 

The usual proof of this theorem is based upon theorems on isosceles tri- 
angles, which in turn are based on tedious theorems on congruent and sym- 
metric spherical triangles. -The proofs of the necessary theorems on isosceles 
spherical triangles are almost trivial in spherical trigonometry. Conse- 
quently, the student is referred to page 69 for the proofs necessary here. 
This inversion of order does not lead to any circular reasoning. 

k. Dertn1t10n: Two spherical triangles will be said to be equal in area 
when they are either superposable as a whole or are the sum or same 

difference of corresponding triangles superposable in pairs. 

1. Derrnitions: The plane triangle of a spherical triangle is the plane 

triangle of the vertices of the spherical triangle. The small circle of a 

spherical triangle is the small circle of the vertices of the spherical 

triangle. The pole of a spherical triangle is the pole of its small circle. 

m. THEOREM: Two spherical triangles of respectively equal sides are 

equal in area. 

Ai 

epee) 
: “ 

Ci @ Ci Bs 

Bi Az : BY Cz 

(a) (b) 

’ FIGurRE 41 
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(1) Let one of the two spherical triangles be kept fixed and the other 

moved so that the planes of the two plane triangles of the spherical triangles 

are identical and so that the convexities of the two spherical triangles are 

the same. 
(2) Two cases will be possible: Case I: The cyclic order of the correspond- 

ing vertices, as viewed from the convex sides, is the same in both spherical 

triangles. (See Figure 41 a.) Case II: The cyclic order of the correspond- 

ing vertices, as viewed from the convex sides, of one spherical triangle is 

opposite to this order in the other spherical triangle. (See Figure 41 6.) 

(3) Case I: The plane triangle of one spherical triangle can be superposed 

on the plane triangle of the other (as they are congruent by s.s.s., since equal 

chords intercept equal arcs) without a rotation out of its plane, thus preserving 
the similar convexity of the two spherical triangles. Since a great circle 
is determined by two points on a sphere, the two spherical triangles will be 
superposed and, therefore, their areas are equal by definition. (See Figure 

42 a. ) = B, Ay Ao 

C2 /| 

/ 4 Be € | 
Ci Cy 

Bi Ao By C2 

(a) (b) 
Figure 42 

(4) Case II: (a) The plane triangle of one spherical triangle cannot be 
superposed on the plane triangle of the other except by a rotation out of its 
plane, which would destroy the similar convexity of the two spherical tri- 
angles and thereby make their superposition impossible. (See Figure 42 b.) 

(b) The small circles of the two spherical triangles are equal, since they 
are the circumcircles of the congruent (s.s.s.) plane triangles of the spherical 
triangles. 

(c) Hence, the great-circle distances from the poles, P;, Ps, of the spher- 
ical triangles to their small circles, and therefore to the vertices of the spherical 
triangles, are all equal to one another. (See Figure 43.) 

FIcureE 43 
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(d) These great-cirele arcs from the poles of the spherical triangles to 
their vertices therefore divide each of the two spherical triangles into the 
sum or into the same difference of three isosceles spherical triangles. Further- 
more, to each isosceles spherical triangle making up one of the given spheri- 
cal triangles there is a corresponding isosceles spherical triangle of respectively 
equal sides making up the other spherical triangle. Consider the pair of 
corresponding isosceles plane triangles B,P,C; and B2P2C> in Figure 44. 

Cy Cy Ci, Be 

Py P, P1,P2 

Bi Ba Bi,Ce 
Figure 44 

(e) The plane triangle B.P2C. can be superposed on the plane triangle 
B,P,C, without a rotation out of the plane of B2PsC2, because these two con- 
gruent (s.s.s.) triangles are isosceles. Therefore, superposing the pairs of 
plane triangles of the isosceles spherical triangles need not alter the con- 
vexity of these isosceles spherical triangles (though superposing non-corre- 
sponding base vertices). Consequently, the component isosceles spherical 
triangles can be superposed in pairs. 

(f) Therefore, the areas of the two given spherical triangles are equal by 
definition. 

n. DEFINITION: The spherical excess, E, of a spherical triangle is 

the quantity A + B+C — 180°, where A, B, C are the measures of 
the angles of the spherical triangle ABC. 

o. THEOREM: The area of a spherical triangle is that part of the area 

of the whole sphere (on which the spherical triangle is located) that 

the spherical excess of the spherical triangle is of 720°, or: 

K 4 rr? 
~ 720° 

(1) Extend the sides of the spherical 
triangle ABC (see Figure 45) to com- 
plete the great circles of the sides. Hight 
spherical triangles are thus formed: tri- 
angles ABC, CAB’, CB’A’, and A’CB 
are on that half of the sphere repre- 
sented as being out from the paper, and 
the other four triangles are in the half 
of the sphere lying behind the plane of 
the paper. 

(2) The spherical triangle A’B’C (on 
the front half of the sphere) is equal 
in area to the spherical triangle ABC’ 
(on the back half of the sphere) by the 

above theorem, since the sides of the Figure 45 
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two triangles are respectively equal by the equality of the plane central 

angles at O. 

(3) Hence, A ABC + A A’B’C = A ABC +A ABC’ 

= lune of angle C 

(4) «. lune of angle B + lune of angle A + lune of angle C = hemisphere + 

2(A ABC). 
B : A : 

(5) «.2(A ABC) = (a) hemisphere + (a) hemisphere 

+ € hemisphere — hemisphere. 

A+B+C-— 180° : 
«2 (A ABC) = ar) hemisphere. 

E : E 
A ABC = ( a) hemisphere = (aa) sphere. 

B. DEFINITIONS AND FORMULAS FROM PLANE 

TRIGONOMETRY 

10. Angles 

a. DEFINITION: When a ray (a straight line extending from a fixed 

point to infinity in but one direction) rotates about its finite end from 

an initial position to any final position, it is said to generate an angle 

whose vertex is the fixed finite end of the ray and whose sides are the 

initial and final positions of the ray. (See Figure 46.) 

terminal side 

A 

A 

Aap wean intialens A A Initha ide aed 

FIGURE 46 

b. CONVENTION AS TO PosiTIvE ANGLES: The positive direction of 
generation of an angle is taken as counter-clockwise. 

c. UNITS IN ANGULAR MBASURB: 

(1) The Sexagesimal System. In this system the angle formed by one 
complete revolution of the terminal line is considered divided into 360 equal 
(i.e., superposable) angles called degrees, each of which is subdivided into 
60 equal minutes of 60 equal seconds. Hence, a right angle (that formed 



11. TRIGONOMETRIC FUNCTIONS OF ANGLES. 21 

when two lines intersect perpendicularly, or so as to form four equal angles) 
360° 

= 90°, contains 

(2) The Radian System. In this system the unit angle, called the radian, 
is the angle at the center of the circle subtending an arc on the circumference 
of a circle equal to the radius of the circle. Since the circumference of a 
circle contains the radius 2 times, there are 2 7 radians in one complete 
circuit. Hence, 360° = 2 z radians or 

180° = 7 radians. (1) 

When no unit symbol is shown for the measure of an Ss 
angle, it is assumed to be expressed in radians. 

The definition of radian immediately gives the re- 
lation 

s=ré (2) 

where s = arc length (in units of the radius) along 

any circle of radius 7, and @ is the angle in radians 
subtended by theare s at the center of the circle. 
(See Figure 47.) Figure 47 

11. Definitions of the Trigonometric Functions of Angles 

a. Given any angle A. Let the origin O of a Cartesian system of 

axes be at A and let the positive z-axis lie along the initial side of the 

angle. Let P:(x, y) be any point on the terminal side of the angle. 

Call OP = 7, considered as always positive, the distance. 

FicureE 48 

b. Then the sine, cosine, tangent, cotangent, secant, and cosecant 

functions of angle A are defined (using the conventional suggestive 

abbreviations for the names of these functions) as 

ordinate abscissa xX 
= i Cs A A 

distance r distance 
sin A 
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ordinate y abscissa X (3) 
tan A = —— = = cot A = ——— = 

abscissa - X ordinate y 

distance r distance r 

me abscissa -X ordinate y 

12. Variation of the Trigonometric Functions 

a. From these definitions of the trigonometric functicns it immediately 
follows that k 

(1) The sine and cosine never numerically exceed unity. 
(2) The secant and cosecant are never numerically less than unity. 

(3) The tangent and cotangent can take on all values, plus or minus. 

b. Figure 49 shows the graphs of the trigonometric functions. 

Y ¥ 

1 ° 1 a0° 
30 g 

xX Sa J X 

y=cos x y=tanax 

Ye Y Y 

17 \see Li-77-90° J 
X Wein: 

y=cot x y=sec x y=cse x 

FIiGure 49 

13. Signs of the Trigonometric Functions 

a. Since r is always positive, the sign of a trigonometric function of an 
angle is given by the signs of x and y of the point P, which, in turn, are de- 
termined by the quadrant in which P on the terminal side of the angle lies. 

6. Derinition: An angle is said to lie in a given quadrant if its terminal 
side lies in this quadrant when its initial side lies along the positive x-axis. 

c. Accordingly, the signs of the trigonometric functions of the various 
quadrant angles are given by 

First Quadrant x and y pos. All positive. 
x neg. cosine, tangent sine Second Quadrant} 8 1 : 8 neg.; Ue pos. y pos. secant, cotangent > cosecant 
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Third sine cosine _ tangent 
trd Quadrant x and y neg. eee secant nes; ee 

Fourth Quadrant \° Bee: t fies tangent . cosine 
: y neg. cosecant, cotangent NEB" secant § POS 

14. Fundamental Relations between the Trigonometric Functions 

a, Recrproca Retations: From the definitions of the trigonometric 
functions it follows that 

(1) The sine and cosecant are reciprocal functions. 
(2) The tangent and cotangent are reciprocal functions. 
(3) The cosine and secant are reciprocal functions. 

b. Squarep Rexations: From the Pythagorean relation for right triangles 
it follows that 

sin?A + cos?A = 1 (4) 
sec?A — tan?A = 1 (5) 
esc?A — cot?A = (6) 

Pi: (X1,¥1) 

Ficure 50 

d. Functions oF (n 90° + A): Any trigonometric function of an angle 
(n 90° + A) is numerically equal to the corresponding function of A, if n is an 
even integer, and to the corresponding cofunction of A, if n is an odd integer. 
Whether there is a change in sign in this relation will depend upon the quad- 
rants of the two angles (n 90° + A) and A. 

Figure 50 shows the case for A acute, n = 3, and the minus sign and 

indicates the method of proof for all cases: Construct OP f= O0P) = Then 

A OPD &A OP,D;. Therefore, x1 = —y, yi = —2%, 11= 7. Applying the 

definitions of the trigonometric functions of the angle 270° — A and of the 

angle A proves the relation for this case. 

15. Functions of Special Angles 

a. The 30°, 60° multiples: From the fact that an altitude of an equilateral 

triangle is also an angle bisector and a median, all functions of 30°, 60°, and 
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n 90° + either of these two angles are expressible exactly. Figure 51 indi- 

cates how these values are to be found (e.g., cos 150° = ii ete.). 

b. The 45° multiples: From the isosceles right triangle all functions of 

45° and n 90° + 45° are expressible exactly. Figure 52 indicates how-these 

values are to be found (e.g., tan 135° = —1, etc.). 

c. The 90° multiples: All functions of any angle whose terminal side lies 
on one half of one of the co-ordinate axes are expressible exactly by observing 
that in these cases one co-ordinate of the point P on the terminal side of 
the angle becomes zero while the other becomes numerically equal to the 
distance r. Figure 53 indicates how these values are to be found (e.g., cot 
180° is undefined, approaching either plus or minus infinity as the angle 
approaches 180°; cos 180° = —1; sin 180° = 0). 

FiGureE 53 

16. Functions of General Angles 

The ratios which express the approximate values of the trigonometric 
functions of general angles are tabulated in tables of 4, 5, or more places of 
decimals. A less accurate, but frequently adequate, approximation can be 
obtained from a slide rule equipped with trigonometric scales. 

17. Trigonometric Functions Determined from a Given Function 

Because of the dependence of the trigonometric functions on one another, 
any one function of an angle determines all the others, provided also the 
quadrant of the angle is known. The method of procedure in each case is to: 

Draw an angle fitting the data, which are to be shown on the figure; 
evaluate a third side of a right triangle by the Pythagorean relation; read 
from the figure the desired trigonometric functions. Figure 54 indicates 
this procedure for two special cases: 
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Fiacure 54 

EXamPLe 1: A; = cos (—2),* Ay in II. 

= fin! Ay = 

EXAMPLE 2: A, = tan 3,* esc A» negative. 

V10° sec Ap = — V 10; ete. 

18. The Addition Formulas 

sin (A + B) = sin A cos Bicos A sin B (7) 
cos (A + B) = cos A cos B¥ sin A sin B (8) 

tan A+tan B 
t A245). = 
au (4 = B) 1+ tan A tan B (9) 

Figure 55 for the case of A and B Y 
acute and A + B obtuse should sug- ] 

rz sin A> = 

gest the method of proof in the case of 
sin (A + B) and cos(A +B). Similar 
figures can be drawn for other combi- 
nations of A, B, and A+ B. 

The tan (A+ 8B) formula is ob- 
tained by dividing sin (A + B) by cos 
(A + B) and then dividing numerator 
and denominator of the resulting frac- 
tion by an expression which will yield 
tangents of angles A and B. 

The formulas for the negative signs O|cosB cosA 
are obtained by replacing B by —B and 
using 14 d for n = Oand the minus sign. Figure 55 

sinB cosA 

cosB sinA 

19. The Double-Angle Formulas 

By replacing B by A in the addition formulas the following result: 

sin2 A = 2sin A cos A (10) 

cos 2 A = cos? A — sin? A = 1 — 2sin? A = 2cos?. A — 1 (11) 

2 tan A 
a a ae 12 

ee 1—tan? A e) 

* Cos —! (—2) or “arc cosine (— 4)” is an angle whose cosine equals —3. 
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20. The Half-Angle Formulas 

site Af ee toes (13) 

cos A/2 = +, ites (14) 

1—cos A in A fait d/F= = (15) 
anid ac | ie 

The + sign is to be determined in each case from the quadrant of the 
angle A/2. 

The first two half-angle formulas are derived by solving, respectively, 
the second and third formulas in (11) for the function of the single angle in 
terms of the double angle. Replacing the double angle by a single angle, 
and therefore the single angle by the half-angle, yields the formulas for the 
sine and cosine of the half-angle. 

The third formula is derived by division of the first two and then rational- 
izing by conjugate multiplication. 

21. The Factor Formulas 

sin A + sin B = 2 sin == cos === (16) 

sin A + sin B = 2 cos <== sin == (17) 

cos A + cos B = 2 cos = cos == (18) 

cos A — cos B= ~2 sin => sin “$= (19) 

These are derived by adding or subtracting appropriate pairs of formulas 
in 18. If, for instance, the two formulas (7) are added, there results 
sin (A + B) + sin (A — B) = 2sin A cos B. 

Solving for A and B in terms of (A + B) and (A — B) yields the first of 
the above formulas. 

22. The Triangle Laws 

These are laws applying to any plane triangle of angles A, B, C and 
corresponding opposite sides a, b, c. 

a. The Law of Sines: 

a b Cc 
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The proof is accomplished by drop- 
ping altitudes onto two sides and equat- ANY 
ing two expressions for each alti- / SC 
tude from the definitions of the trigono- > 
metric functions. (Each altitude, form- 
ing two right triangles, makes the 
definitions of trigonometric functions 
immediately applicable.) (See Figure 
56: A, = bsin A = asin B, etc.) Ficure 56 

b. The Law of Cosines: 

a’ = b? + c? — 2 bc cos A, etc. 

This law expresses the square of an assumed unknown side in terms of 
the assumed known other two sides and the included angle. It is proved by 
dropping an altitude onto one of the known sides, forming segments ¢; and 
¢2. The square of the unknown side is then expressed by the Pythagorean 
Theorem in terms of the altitude and one of the ¢’s, which latter is then 
written in terms of a known side and the other ¢. Another application of 
the Pythagorean Theorem eliminates the squares of the remaining auxiliaries 
(¢ and the altitude) in favor of the other known side. Finally the definition 
of the cosine eliminates the remaining auxiliary. (See Figure 57.) 

FIGURE 57 

a? = p? + 27 3 do = + (C— $1) 
a2@=p+ce—2c¢it or 
a2 = b? +c? — 2c (bcos A), ete. 

c. The Half-Angle Law: 

r 

2 s-a 2 s—bd’ 28 

— a= fp) = 

where s=3(atb+c) and r= grae- 679 

This law is merely a devious algebraic transformation of the law of co- 

sines by means of the half-angle formulas to yield formulas which, because 

they involve products instead of sums and differences, will be more suitable 

for logarithmic solutions of angles of triangles given the three sides. 
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Since an angle is desired, it is natural to begin by solving a cosine formula 

for the angle: 
a? = b?+ ¢?— 2becos A 

+c? — a? 
cos A = ————- 4 

2 be 

The terms b°, c?, 2 de suggest (6 + c)*, which can be introduced by re- 

spectively adding or subtracting cos A from 1. Exploring this lead gives: 

b? + 2 be + c? — a? 
1+cosA = ai 

1 cv eda Ae eee 
2 be 

Algebraic factoring then reduces the right-hand sides to products: 

i 2 ‘as 2 

L+oos de OETA 1— cos A= S—Oa 

(b+ c— a) (b+ce+ a) _ (a—b+0 (at+b—o) 

‘ 2 be : 2 be 
2(s—a)2s 2 (s — b) 2(s—c) 

o 2 be ba 2 bc 

The half-angle formulas then give: 

Ae s(s — a) 5 + 4| Seas 

“8 \ be ok Lo bc 
and division of the second by the first gives the above formulas to be derived. 

ad. The Law of Tangenis: 

tan$(A- B)  a-—b . 

ine (Ate. ee 
Sthee the sum of the angles of a plane triangle is constant, any one angle 

determines the sum of the other two. The individual angles of this sum could 
then be found if their difference could be computed. This reasoning may 
suggest exploring functions of the sum and difference of two angles. Since 
the factor formulas involve just such functions, expressing the sums or differ- 
enees of the sines or cosines of two angles is suggested. The law of sines is © 
the point af departure: 

Writing the sine law 

and taking this proportion in subtraction and addition, one obtains: 

sin A—sinB  a—b 

sin At+sinB a+b 

Applying the factor formulas (16) and (17) gives 

2 cos } (4 + B)sin }(A— B) a-b 

2sin $(4 +B) cos} (A = B) a+b” cot (4 FB) tan $ (4 — B) 

from which the desired law is obvious. 



CHAPTER 1 

Fundamental Concepts 

1. Purpose and Scope of Spherical Trigonometry 

Spherical trigonometry is to the surface of a sphere what plane trig- 

onometry is to a plane. Since we live on the surface of a sphere and 

imagine the heavenly bodies as moving in a celestial sphere about the 

earth, the applications of spherical trigonometry are many and obvious. 

As long as relatively short distances are considered, plane trigonometry 

is entirely adequate. When, however, we are concerned with flying or 

sailing more than a few hundred miles, we must take the curvature of 

the earth’s surface into account; i.e., we must use spherical trigonometry. 

Furthermore, calculations involving the heavenly bodies, by which time 

is measured and positions on the earth’s surface are determined, make 

use of the concept of a spherical shell about the earth as center. Upon 

this celestial sphere all the heavenly bodies are imagined to be projected. 

Measurements based on the positions of these heavenly bodies must 

necessarily use spherical trigonometry. 

The student will find it interesting and instructive to watch for sim- 

ilarities and differences between analogous ideas in spherical trigonome- 

try and plane trigonometry. In this way — by comparison and con- 

trast — he will fortify his knowledge of plane trigonometzv while ex- 

ploring spherical trigonometry. Some of these analogues are striking; 

others are hardly perceptible. 

2. Geodesics or Lines of Minimum Distances 

Just as in plane trigonometry the plane triangle is fundamental (be- 

cause it is the polygon of the smallest number of sides and because it is 

rigid; i.e., determined when its three sides are given), so in spherical 

trigonometry the spherical triangle is the fundamental object of con- 

sideration. Sides of plane triangles are geodesics (lines of shortest dis- 

tance between pairs of points on them) in the plane. Since the idea of 

shortest distance between two points is obviously an efficient one, it is 

desirable to make the sides of spherical triangles by definition geodesics 
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on the sphere. The information necessary for such a definition is to be 

found in the following definitions and theorem. 

Derrnition: A great circle on a sphere is the circle of intersection of the 

surface of the sphere and a plane through the center of the sphere. 

DerFrnition: A small circle on a sphere is the circle of intersection of 

the surface of the sphere and a plane not through the center of the sphere. 

Turorem: The geodesic or shortest distance on the surface of a sphere 

between two given points (not diametrically opposite) on this surface ts 

the minor arc of the unique great circle through the two given points. 

Ps 

(5) 

Fiaure 58 FIcure 59 

1. In Figure 58 P and Q are the two given points on the surface of 

the sphere. PNQ is the minor great-circle are between P and Q, with 

N as its midpoint, O, the center of the sphere, as its center, and R, 

the radius of the sphere, as its radius. PMQ is the minor are of some 

small circle through P and Q, with M as its midpoint, o as its center, 

and r as its radius. PUQ is any other are on the sphere between P 
and Q; that is, PUQ is not a plane are. 

2. It will be assumed to be intuitively obvious that PUQ, an are of 

a space curve between P and Q, will be longer than the shortest are of a 
plane curve between these two points. Hence it remains to show that 
PMQ is longer than PNQ. That PNQ is unique follows from the fact 
that the three points P, Q, and O determine but one plane. 

3. Imagine the plane figure oPMQ rotated about the chord PQ until 
the plane of this figure coincides with the plane of OPNQ with o lying 
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between the chord and O. Figure 59 a shows the result of this rotation 
with M,, 0; indicating the new positions of M and 0, respectively. 
Since the sum of two sides of a plane triangle exceeds the third, 

Oo, + 01Q —S OM, ze OQ = ON. 

Therefore M, and the whole of are PM,Q except the end points lie 

above the sphere. Consequently, if a string were fitted over the arc 

P NQ, it is at least intuitively obvious that to be made to fit over PM,Q 

or over its equal PMQ, this string would have to be stretched. There- 

fore, it is at least intuitively obvious that the arc PNQ is less than the 
arc PMQ. 

4. For a more rigorous proof that 

arc PM,Q > arc PNQ, 

see Figure 59 b and investigate the variation in circular arcs subtended by 
the chord PQ as the position of the center of such arcs, and consequently also 
the radii of these arcs, vary. Letting a be half the chord PQ, s half the 
subtended varying arc of varying radius z, and 2 @ the varying central angle, 
we have 

s= 26, in radians; x = acsc 0, 
(See Introduction 10 c (2) and 11 b.) 

] 
s=a@cscO=a ——: 

sin 6 
But 

area sector ZQY = 42? 6 > area triangle ZQY = 42 (xsin 6). 

Therefore, 6 > sin 6 and =, > 1, which shows that s is certainly greater 

than a. Comparison of tables for @ in radians with tables for sin @ will 
quickly show that as @ increases, the ratio of @ tosin @ numerically increases.* 
For example, 

= —: —— = ——— = 1.047 
: 6 sin@ 0.5000 

wr @§ 0.7854 

OS eb a POLL oe 
nr 6 1.5708 

6 = 5' Sn 8 ~ 1.0000 
Consequently, s increases as 6 increases, or s decreases as 0 decreases and 

as x increases. But the largest value possible for x is R, the radius of the 

sphere. Hence, the smallest value of s is that for which the arc lies along 

a great circle. 

* Tf calculus is used, we have 
6 

a-7- =a 6 csc 6, 

sin 6 
s= 

ds esc 6 
ne eae gee 6— @). 
dp Coma ee ) 

But for first quadrant 6, tan 6 > 6, and csc @ and tan @ are positive. Hence, for first 

quadrant 0 (those values of 6 with which we are concerned), 7p > 0, and s is an increas- 

ing function of 6. 
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3. Spherical Triangles 

Having seen in the previous section what arcs on the sphere are 

geodesics, we are in a position to define spherical triangles as follows: 

Dxrinition: Spherical triangles are closed figures formed on the sur- 

face of any sphere by arcs of three great circles, each such arc being less 

than a half-circle. — 
OG 
a 

AR 

ae 
c C 

a 

B 

FIGURE 60 

The arcs of the great circles are the sides and the points of intersec- 

tion of the ares are the vertices of the spherical triangles. 

Spherical triangles are labeled as are plane triangles in general: Large 

letters, usually A, B, and C, for the vertices or the measure of the angles 

at these vertices, and corresponding small 

letters for the opposite sides or their 

measures. (See Figure 60 for examples.) 

It is occasionally desirable to consider 

on a sphere certain triangles one or more 

of whose sides are arcs of small circles. 

In Figure 61, PyADB is such a triangle 

on the surface of the earth, where the 

side ADB isan arc of a parallel of latitude. 

(Arc ACB is the great-circle are between 

A and B.) As will be pointed out in 

Chapter 4, such triangles can be measured Figure 61 
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but are measured by methods other than those applying to spherical 
triangles, from which class of triangles the triangle PyADB is, by defini- 
tion, excluded. 

4. Fundamental Concepts of Plane and Spherical Trigonometry Com- 
pared 

From the foregoing it is apparent that arcs of great circles are to be 
considered the analogues in spherical trigonometry of straight lines in 
plane trigonometry. Each is the geodesic (shortest distance between 
two points) in its domain, and hence, by definition, each is used as a 

side of a triangle in its domain. A brief consideration of some of the 

more obvious differences between “straight lines” or geodesics in plane 
and in spherical trigonometry is instructive. 

1. All “straight lines” (i.e., great circles) in spherical trigonometry 

intersect one another in two points; hence, there are no parallel lines in 

spherical trigonometry. This follows because all great circles intersect 

all other great circles, as their planes must intersect one another, since 
they must all contain the center of the sphere. (Cf. Introduction, 6 c.) 

Derinition: The angle between two great-circular arcs is the plane 

angle between the tangents to the two arcs at their point of intersection. 

In Figure 62, AC,, AC2 are two great-circular arcs intersecting at A. 

At,, Atz are the tangents at A to C; and C2, respectively. By defini- 

tion, the plane angle ¢,;At, is the angle between the two great-circular 

ares. By drawing the radius AO it is seen that this angle is also the 

plane angle of the dihedral angle C;-AO-C, formed by the two planes 
of the great circles AC,, AC, intersecting in the radius OA. (Cf. In- 

troduction, 4 a, b.) Hence, to say that the angle between two great- 

circular arcs is 60° is to say that their planes intersect in an angle of 60°, 

and two great-circular arcs are perpendicular when their planes are 

perpendicular. 
N 

FIGuRE 62 FIGURE 63 
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2. Two “straight lines,” each perpendicular to a third straight line, can 

intersect one another at any angle. From 1 they cannot be parallel. By 

taking any two meridians on the earth as the two given straight lines 

and the equator as the third straight line (see Figure 63), the truth of 

this becomes apparent. All meridians are perpendicular to the equator, 

because their planes are perpendicular to the plane of the equator, since 

the axis of the earth is the diameter perpendicular to the plane of the 

equator. (See Introduction, 4c.) Consequently, 

3. A spherical triangle can have one, two, or three right angles. Just 

as we agree to restrict the size of the sides of spherical triangles to arcs 

less than half-circles, we also restrict their angles to less than straight 

angles. More generally we know that 

4. The sum of the angles of a spherical triangle is greater than one and 

less than three straight angles. The proof of this, though not essential 

here, can be recalled by referring to Introduction, 9 7. 

Whereas the length of a side of a plane triangle depends merely upon 

the distance between the vertices on this side, the length of a side of a 

spherical triangle must depend on the size of the sphere on which it is a 
triangle. Figure 64 shows two spheri- 

cal triangles, ABC and A’B’C’, one on A 

each of two concentric spheres, with the 

vertices of the triangle on the larger 

sphere projections, from the center of Fr n 

the two spheres, of the corresponding (oes 

vertices of the triangle on the smaller 

sphere. We would naturally call these 

two triangles similar. The angles at 

the vertices of one triangle are equal 

respectively to the angles at the cor- 

responding vertices of the other triangle. 

Furthermore, the angular measures of FIGURE 64 
corresponding sides of the two triangles 
are equal, being the angular measures between radii to the pairs of 
vertices. The linear measures, however, of the sides of one triangle are 
not equal to the linear measures of the corresponding sides in the other. 
Consequently, we conclude that on a given sphere all the properties of 
a spherical triangle will be completely known when the angular measures 
of the angles of the triangle and the angular measures of its sides are 
known or can be deduced. 

5. In spherical triangles we shall consider the sides (as well as the angles) 
measured in degrees; 7.e., in degrees of arc. When the linear measure of 
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a side of a spherical triangle is desired, it can be immediately computed 
by the well-known formula s = 7, or ‘‘the linear measure of a circular 
are equals the linear measure of the radius of the circle times the angular 

measure of the arc in radians.” To facilitate this last computation in 

the case of spherical triangles on the earth’s surface, the following con- 
vention has been adopted: 

DEFINITION: A nautical mile is the distance on the earth’s surface 

covered by one minute of arc of a great circle. 

Consequently, the linear measure in nautical miles of a side of a 

spherical triangle on the earth’s surface is equal to its measure in min- 

utes of arc. To convert to land miles (if this should ever be required) 
the following relations can be used: 

1 nautical mile = 6080 feet 

1 land mile = 5280 feet 

5. Suggestions for Sketching Spherical Triangles 

Even though a student may learn how to perform mechanically the 

computation involved in solutions of spherical triangles, he will never 

really know what he is doing unless he can visualize the geometry in- 

volved by drawing simple sketches. A few suggestions toward this end 
are pertinent here. 

1. Visualize a required spherical triangle as actually lying on a 

sphere represented by a large circle. Then, when its general aspects 
are thus made clear, it may be sufficient to consider the triangle by itself 

without the sphere. 

2. Draw all great circles on a sphere (except that one in the plane of 

the paper) as ellipses with major axes along diameters of the sphere. 

FIGureE 65 FIGcuRE 66 
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Draw the forward half with a full line and the half on the back of the 

sphere with a dotted line. Above all, remember that the two points 

where these two half-ellipses join must always be diametrically opposite. 

To make sure of this, show the major axis of the ellipse as a dotted di- 

ameter of the sphere as is indicated in Figure 65. Points of intersection of 

two great circles must be shown as being diametrically opposite one another. 

3. Adopt a reasonable convention for the amount of perspective to 

be shown. Figure 66 shows a sphere with three mutually perpendicular 

great circles. The amount of baying out of the ellipses to represent the 

horizontal great circle (the equator, if the sphere is thought of as the 

earth) and the vertical great circle in the yz plane is arbitrary. But if 

the student has in his own mind some reasonably fixed convention as to 

the amount of baying out for these two great circles, he will be better 

able to visualize two great circles intersecting at any desired angle. 

Figure 67 illustrates this last point. All sketches should be freehand and 

quickly executed. All that is needed is a ready method of approxi- 

mating the required geometrical relations. 

@ i\> 

(a) (b) 
FIGURE 67 

4. To draw the great circle through a given point on the sphere and 
perpendicular to a given great circle, first sketch the position of a pole 
of the great circle. 

Figure 68 
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DerFinitTion: A pole of a great circle is either one of the two points on 
the surface of the sphere at which that diameter of the sphere which is per- 
pendicular to the plane of the great circle pierces the surface of the sphere. 
(Cf. Introduction, 6 d, ff.) 
Then draw the great circle through the given point and this pole. 

(Cf. Introduction, 6 f.) Figure 68 illustrates this last point. 

6. Problems on Chapter 1 

1. Represent a sphere by a large circle G in the plane of the paper. Let A 
be a point on the sphere and place A on G 60° below and to the right of the top 
of G. Then: 

Through A draw three great circles, Gi, G2, Gs, represented as making with @ 
respective angles of 90°, 45°, 20°. Curve G; so that it does not appear directly 
in front of the observer. Mark the angles of intersection of G1, Gs, G3 with G. 

2. Represent a sphere by a large circle G in the plane of the paper. Let A 
be a point on the sphere not on G. Let A appear to be one third of the radius 
of G in from the circumference of G. Then: 

(a) Through A draw a great circle G; represented as intersecting G at an 
angle of 20°. 

(b) Through A draw a great circle G: represented as intersecting G; at 
an angle of 30°. 

(c) Locate the poles P;, P;’ of G; and the poles P2, P.’ of Go. 
(d) Draw the great circle P;P2Pi’P:’ and on it mark a 90° are from P, 

to G, and a 90° arc from P» to G2. 
(e) Locate the poles of P;P2. 

3. Represent a sphere by a large circle G in the plane of the paper. Let A 
be a point on the sphere, but not onG. Then: 

(a) Draw a small circle g such that every point on g appears to be 30° of 
are from A. 

(b) Let B, C be two points on this small circle g, but not at ends of the 
same diameter of g. 

(c) Draw the great circle through B and C and label the great-circle dis- 
tance and the small-circle distance between B and C. 

(d) Draw another small circle through B and C. 

4. Draw five large figures each representing a sphere by a large circle G in 
the plane of the paper. Let A be the top of G in each figure. Then in each 

figure draw a spherical triangle with one vertex at A such that 

(a) In the first figure the triangle is isosceles with the equal legs 90° and 

the vertex angle 20° at A. 
(b) In the second figure one side through A is 170°, the side opposite A 

is 15°, and the angle at A is 150°. : 

(c) In the third figure angle A is 10° and the legs through A are 160 and 

15°, respectively. ; : 

(d) In the fourth figure the triangle is equiangular with all angles 90°. 

(e) In the fifth figure the triangle is equilateral with all sides 15°. 

5. Draw three large figures, each representing a sphere by a large circle G 

in the plane of the paper. Let A be a point on the sphere, but not onG. Let 
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A appear to be one third of the radius of G in from the circumference of G. 

Then in each figure draw a triangle with A as one vertex such that 

(a) In the first figure angle A is 20° and the sides through A are 100° and 

30°, respectively. 
(b) In the second figure the triangle is isosceles with the vertex angle 

A 170° and the opposite side 150°. 
(c) In the third figure the triangle has two 90° angles, one of them at A, 

and the included side 30°. 

6. On a large sketch show two points on the earth’s surface, both on the 60° 
north parallel of latitude and differing in longitude by 180°. Mark the are 
representing the distance between these two points along the parallel of latitude 
and also along the great circle through them. In terms of R, the radius of 
the earth, express the distance saved in taking this great-circle path between 
the two points instead of the parallel of latitude path. What approximately 
does this saving amount to, assuming the earth’s radius is 4000 miles? 

7. Follow directions in Problem 6 for two points on the 30° south parallel of 
latitude. : 

8. If the great-circle distance between two points having the same latitude 
on the earth’s surface is the distance along the parallel of latitude, where must 
the two points be? What can be said of two points on the earth’s surface such 
that the great-circle distance between them lies on a great circle through the 
poles of the earth? 



CHAPTER 2 

Right Spherical Triangles 

7. Definition and Importance of Right Spherical Triangles 

Right triangles play the same réle in spherical trigonometry that they 
do in plane trigonometry. They are more simply solved than oblique 

triangles and they can be used effectively to divide up oblique triangles 
for solution. 

DEFINITION: A right spherical triangle is a spherical triangle with at 

least one right angle. (The right angle will ordinarily be labeled C.) 

To “solve” any spherical triangle is to find the angular measure of 

each unknown angle and each unknown side, given a certain set of 

known parts. From what follows it will be seen that, in general, the 
same number of parts are needed to solve spherical as plane triangles, 

namely, three. The exception in plane triangles of no solution if three 

angles only are given, will be seen later not to be an exception in spheri- 

cal triangles. 

In the case of right spherical triangles, then, “solving” will mean, 

given any two parts in addition to the assumed right angle, to compute 

the angular measures of the three remaining parts. When one of these 

two given parts, in addition to the already assumed right angle, is another 

right angle, the right spherical triangle becomes so specialized as to de- 

mand individual attention. Since fundamental solid geometry theorems 

are directly applicable to such particular right spherical triangles (as will 

later be pointed out), their special treatment is not difficult. This special 

treatment is necessary because the formulas to be derived for other right 

spherical triangles will be found to be inapplicable to the specialized right 

triangles. 

Derinition: A general right spherical triangle is a spherical triangle 

containing one and only one right angle. 

Derinition: A special right spherical triangle is a spherical triangle 

containing at least two right angles. 

The solution of the general case is logically considered first to show 

the need for the special case. 
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To provide a method for solving general right spherical triangles, 

formulas, called Napier’s Rules, will be derived and arranged so as to 

be easily remembered. The derivation of these right-triangle formulas 

draws heavily on theorems from solid geometry and is the most com- 

plicated part of spherical trigonometry as well as the basis for the solu- 

tion of all spherical triangles. 

8. Derivation of Formulas for Solving General Right Spherical Tri- 

angles 

1. Given the general right spherical triangle ABC with C = 90°. 
To derive formulas expressing each of the other five parts in terms 

of some other two of these five parts. 

(b) 
FIGURE 69 

2. Construction: a. Connect the vertices A, B, and C in Figure 69 

with O, the center of the sphere on which ABC is a right spherical 
triangle. 

Derinitions: In each case the figure thus formed by the planes of the 
three given sides of the right triangle, intersecting at the center, O, of the 
sphere, is called the trihedral angle, corresponding to the spherical triangle. 
The point O is called the vertex of the trihedral angle. The planes OAB, 
OAC, OBC of the sides of the triangle are called the faces, the plane angles 
at the vertex are called the face angles, and the radii OA, OB, and OC are 
called the edges of this corresponding trihedral angle. (Cf. Introduction, 
5 a and 9b.) 

b. Through B construct the plane perpendicular to OA. 

That is, imagine this construction performed according to Introduc- 
tion, 3 d. Several essentially different figures are possible, depending 
upon the position of this constructed plane, which in turn depends upon 
the shape of the given general right spherical triangle. The case assumed 
here is that shown in Figure 70, for which (1) angle A is acute and (2) the 
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constructed perpendicular plane intersects the lines of OA and OC on the 
segments OA and OC, respectively. The actual existence of this case is 
established by Figure 70, at least intuitively. Steps 3 and 4 of the 
proof below can be used to verify this with certainty. Following the 
derivation of the required formulas for this assumed case, all other possible 
cases will be exhibited. The formulas derived for the originally assumed 
case will then easily be shown to be valid for all cases. 

Let this perpendicular plane through B meet OA in D and OC in E, 
where D lies between O and A, and E between O and C. 

B 

a 

0 4-4 

re [/> 
Bp A 

Ficure 70 Ficure 71 

3. Plane triangles ODB and ODE (see Figure 70) are right triangles 

with their right angles at D: 

Since OA is perpendicular to the plane BDE, by construction, the line 
OA is perpendicular to the two lines BD and ED in this plane and meeting 
OA at D. (Cf. Introduction, 3 a.) 

4. Plane triangles OBE and DBE are right triangles with their right 

angles at HL: 

a. Since, by construction, the line OD is perpendicular to the plane 
BDE, the plane OAC, containing the line OD, is also perpendicular to 
the plane BDE. (Cf. Introduction, 4c.) Reciprocally, the plane BDE is 
perpendicular to the plane OAC. 

b. But also plane OBC is perpendicular to the plane OAC, because 
angle C of the spherical triangle is given a right angle. 

c. Therefore, also the line BH, the intersection of the two planes BDE 
and OBC (each perpendicular to the plane OAC) is perpendicular to the 
plane OAC. (Cf. Introduction, 4 f.) 

d. Consequently, the line BE is perpendicular to the lines OC and ED 
at EH. (Cf. Introduction, 3 a.) 

5. Plane angle BDE of the plane triangle BDE equals the (acute) 

angle A of the spherical triangle ABC: 

By 3, above, the sides BD and ED of this angle are each perpendicu- 
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lar to the edge OA of the dihedral angle of the spherical angle A in the 

spherical triangle ABC, and each of these sides of the angle BDE lies in 

one of the faces of this dihedral angle of the spherical angle A. (Cf. 

Introduction, 4 6.) 

6. Since central angles are measured by their intercepted arcs, the 

face angles COB, AOC, and AOB of the corresponding trihedral angle 

O0-ABC are each equal to the side of the spherical triangle lying in the 

face of the respective face angle. 

7. Figure 71 is Figure 70 detached from the sphere, with the facts 

of the above steps indicated on the figure. 

B 

gia 

Ss t I | 1 | ! | | | | | ! | l | ! | 1 ! 

ms 

FIGURE 72 

8. In Figure 72, OB is taken to be one unit long. Then, by means of 

the definitions of the various trigonometric functions of angles in right 

plane triangles (cf. Introduction, 11 6), the other sides of the four trian- 

gles, proved in the above to be right triangles, are shown evaluated. 

Since each side of these four right triangles, OBD, OBE, ODE, BDE, 
is a side of two plane triangles, the evaluations of these sides, other than 

OB taken equal to 1, can be accomplished in several different ways. The 
particular plan adopted here is the following: 

a. Four of these remaining five sides of the four triangles (i.e., all but 
DE) lie in triangles in which OB (= 1) isaside. These four sides are there- 
fore most simply evaluated by using that trigonometric function of a 
known angle which involves OB (= 1). 

b. DE, the last side of the four right triangles, can then be evaluated 
in four different ways — twice for each of the two right triangles of which 
it is a side. The two evaluations considering DE in triangle ODE are 
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written on one side of DE, and the two evaluations considering DE in 
triangle BDE are written on the other side of DE. 

9. Equating all possible pairs of these four expressions for DE would 
yield six equations involving parts a, b, c, A of the right spherical tri- 

angle ABC. Two of these equations will involve all four of these parts 

and, because they will therefore not lead to the expressing of one unknown 

part in terms of two known parts, are discarded. The remaining four 

equations, each of which contains but three of these four parts, can be 

most concisely written, and written so as to avoid fractions, in the fol- 
_ lowing way: 

cosa sinb =cosctanb or cosc = cos a cosb (1) 
sinecosA =sinacotA cr sina =sin Asin c (2) 

cosasinb =sinacotA or sinb = tana cotA (3) 
cosctanb =sinecosA or cosA = tanb cotc (4) 

10. The whole of the above procedure can be repeated by beginning 

with the construction of the plane through A, perpendicular to OB.* The 

results of such a repetition are obtained by interchanging a and b and 

replacing A by B in the above four formulas, giving the first formula 

over again and the three new ones: 

sinb = sin Bsinc (5) 

sina = tanb cot B (6) 

cos B = tana cote (7) 

11. In the seven formulas, sides a and b are each expressed in terms 

of two other parts of the spherical triangle in two different ways. Angles 

A and B and side c, on the other hand, are each expressed in terms of 

two other parts in but one way. We wish to rectify this discrimination 

and obtain two relations for each of the five parts a, b, c, A, B. 

Observing that both the relations expressing a in terms of two other 
parts and both expressing } in terms of two other parts involve the re- 
spective parts a and b in the same function (namely, the sine), we naturally 
desire this duplication of functions in the second relation for parts A, B, 
and c. Consequently, we combine certain of the seven formulas above 
to obtain a second relation for each of the functions cos A, cos B, and 
cos c in terms of two other parts of the spherical triangle. One method 
of procedure is the following: 

a. For cos A: 

Multiply equations (2) and (3) together to get 

sina sinb=cos Asinctana or cos A=cosasinbesce. 

* No restrictions (such as were assumed for A in 2 6) are logically necessary for B. 

The validity of the formulas so far derived could be extended to all cases now as well as 

later. 
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Eliminate sin b ese c from the above by means of formula (5): 

cos A = cosasin B (8) 

b. For cos B: 

An entirely similar procedure for cos B, using formulas (5) and 

(6) and then (2), yields 

cos B = cos b sin A (9) 

c. For cos c: 

Multiply equations (2) and (4) together to get 

sina cos A = sin Acosctanb or cosc=sinacot A cot b 

Eliminate sin a cot 6 from the above by means of formula (6): 

cos c = cot A cot B (10) 

12. These ten formulas expressing each of the parts (aside from the 

right angle) of a general right spherical triangle in terms of two other 

parts in two different ways, enable us to solve a general right spherical 

triangle given any two parts besides the right angle: 

sina =sin Asinc (1) 

sina = tanb cot B (2) 

sinb = sin Bsine (3) 

sinb = tana cot A (4) 

cosc = cosa cosb (5) 

cose = cot A cot B (6) 

cos A = cosa sin B (7) 

cos A = tanb cotc (8) 

cos B = cosb sin A (9) 
cos B = tana cotc (10) 

Figure 73 Figure 74 
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Plane right triangles are solved by an analogous set of ten formulas, 
derived directly from the definitions of the trigonometric functions (see 
Figure 73): 

a=csinA, 6b=csinB, c=acscA 
a=btanA, b=atanB, c=bsecA 

A=sin? a/c, B=sin— b/c 
A=tanta/b, B=tan™b/a 

But in the case of plane right triangles the two given parts, besides the 
right angle, cannot be the two acute angles. Since in spherical triangles 
the angle sum is not constant, in contrast with plane triangles (cf. Intro- 
duction, 9 7), this exception does not exist in right spherical triangles. 

13. It remains now to extend the validity of these ten formulas for 
the solution of general right spherical triangles resulting in the type of 
figure shown in Figure 70, and described in 2 b, to all general right 
spherical triangles. 

a. Without loss of generality we can consider (see Figure 74): 
(1) the right-angle vertex C, at the right-hand intersection of the hori- 

zontal great circle and that vertical great circle which is in the plane of 
the paper; 

(2) the vertex A, somewhere on the forward half of the horizontal great 
circle; and 

(3) the vertex B, somewhere on the upper half of that vertical great circle 
which is in the plane of the paper. 

b. The case in which the vertex A is 90° of arc from C will be con- 

sidered under special right spherical triangles. There remain but two 
general positions for A: less than 90° from C (Aj), and more than 90° 

from C (A2). Let C’, Ax’, A»’ be the other extremities of the diameters 
through C, A1, and A., respectively. 

c. The restrictions on the figure for which the ten formulas have been 
derived were restrictions on (1) the quadrant of angle A and (2) the position 

of the plane from vertex B perpendicular to the diameter of vertex A. (See 
Figure 70.) The quadrant of angle A will be fixed by the positions of the 
vertices A and B. But, since the construction of the perpendicular plane from 
B is unique for any given positions of vertices A and B, the possible positions 
of B for any assumed position of vertex A will be exhausted by considering the 
intersections with the half-circle on which B is agreed to lie with a plane 
perpendicular to the diameter of vertex A as the plane moves from one end 
of this diameter to the other. By this procedure, for any assumed position 
of vertex A, all possible combinations of position of the constructed plane 
and quadrant of angle A will be exhausted. Applying this procedure to the 

two essentially different positions of A (A1, A2), we see from Figure 75 that 

there are essentially just four figures possible for the derivation of the ten formu- 

las for the solutions of all general right spherical triangles. The case in which 

the constructed perpendicular plane intersects AOA’ at O is the case in which 

B is 90° from C. This case, like the similar one in which A is 90° from C, 

will come under special right spherical triangles. 

Steps 3 and 4 of the derivation of the ten formulas for the assumed first 
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figure are useful in determining the positions of B as the intersections of its 

half-circle with the planes perpendicular to AOA’, As an aid in this, tan- 

gents at points A are shown to fix the directions of perpendiculars to the 

diameters of A. 

FIGURE 75 

d. The case of Figure 75 a was the case assumed in the above derivation 
of the ten formulas. The extension of these formulas to the other three cases 
is so much the same in each case that the extension to but one case, that of 

Figure 75 c, will suffice here. Primes on letters representing spherical angles 
or arcs will here (as generally elsewhere in this text) indicate supplements. 

e. Extension to the case of Figure 75 c: From the figure the general right 
spherical triangle A2BC’ conforms to the restrictions on that figure for which 
the above ten formulas have been derived. Consequently, Formulas 1-4 
in 9, those which depend on the plane BDE, apply for this spherical triangle. 
Hence, replacing a by a’, b by b’, c by c, and A by A’: 

cosc = cosa’ cosb’; cose = (— cos a) (— cosb) ; cose = cosa cosb 
sina’ =sin A’sine ; sina =sinA sine 
sin b’ = tana’ cot A’; sinb = (— tana) (— cot A);sinb = tana cot A 
cos A’= tanb’ cotc ;—cos A = (—tanb) (cote) ;cosA=tanb cotc 

| 

ll 
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Thus these four formulas are extended. But the three new formulas de- 
rived by constructing the perpendicular plane through A can be extended 
in a like fashion, since the possible cases for the perpendicular plane through 
A are certainly precisely those for the perpendicular plane through B. Since 
the remaining three formulas were algebraically derived from the first seven, 
which are now extended, these remaining three formulas are automatically 
extended. 

9. Napier’s Rules of Circular Parts 

The ten formulas given in step 12, section 8 for solving general right 

spherical triangles must be thoroughly committed to memory just as in 

the case of plane right triangles. To facilitate this memorizing, a 

scheme known as Napier’s Rules * has been devised. Before describing 

this scheme the following observations about the ten formulas in ques- 

tion will make Napier’s Rules less of a mystery. 

1. The two legs are evaluated by means of the sine function but the 

hypotenuse and the adjacent angles by means of the cosine function. 

2. The first of each pair of formulas involves either or both the sine, 

cosine functions on the right side but the second formula in each pair 

involves either or both the tangent, cotangent functions. 

The scheme to memorize the ten formulas necessary for the solution of 

general right spherical triangles can be described as follows: 

(1) Sketch and letter a general right spherical triangle as in Figure 76, 

indicating the right angle with a square inside 

the angle. Place the letters co before the 

letters for the hypotenuse (side opposite the 

right angle) and the angles adjacent to the hy- a 

potenuse. These parts so prefixed shall be read 

“co A, coc,” etc., to signify that the parts A, ¢, 
etc., are to be replaced by their respective com- Wy 

plements whenever substituted in the following r 

rules. Cross out the letter representing the “© eorinve 

right angle. 

(2) Each of the remaining five parts of the right spherical triangle 

can in turn be considered the ‘“‘middle part,’’ with two “‘adjacent parts” 

(the parts flanking the middle part) and two “opposite parts” (the other 

two parts). 

(3) The ten formulas can then be summarized by the rules: 

The sIne of any mlIddle part = product of cOsines of Opposite parts. 

The sIne of any mIddle part = product of tAngents of Adjacent parts. 

The repeated capitalized letters are meant to assist in committing these 

rules to memory by emphasizing what parts and what functions go together. 

co B 

* John Napier, Laird of Merchiston (1550-1617). 
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Applying these rules to Figure 76 with a considered as the middle part, 

we have 

sin a = cos co A cos coc =sin A sine which is formula 1; 

sin a = tan b tan co B = tan bcot B_ which is formula 2. 

If A is considered as the middle part we have 

sinco A = cosacosco B or cosA=cosasinB whichis formula 7; 

sinco A =tanbtancoc or cos A =tanbcote whichis formula 8. 

10. Problems on Séction 9 

1. In the right spherical triangle ABC in which C = 90°, A = 60°, and 
B = 45°, find the hypotenuse as an arc function. Evaluate by slide rule or 
tables of natural functions. Sketch. 

2. In the right spherical triangle ABC, C is the right angle. Find angle A 
as an arc function if side 6 = tan“(— 3) and side a = 30°. Evaluate by slide 
rule or tables of natural functions. Sketch. 

3. Find all sides (as arc functions) of the spherical triangle whose three 
angles are, respectively, 90°, 120°, cos 0.6. Evaluate by slide rule or tables 

_ of natural functions. Sketch. 

4, Solve (i.e., find all unknown parts as are functions) the right spherical 
triangle whose two legs are, respectively, tan~ 12, 120°. Evaluate by slide rule 
or tables of natural functions. 

5. Assume that the two legs of a general right spherical triangle are known. 
(a) Write the three Napier’s Rules formulas each of which involves a 

different unknown part of the triangle and the two known parts. 
(b) If necessary, rewrite these three formulas so that each is solved for 

a function of one unknown part in terms of the two known parts. Under- 
score these three formulas in this form. They shall be called the working 
formulas for the solution of the particular general right spherical triangle. 

(c) Write the check formula for this particular right triangle, namely, the 
Napier’s Rules formula involving all three unknown parts. 

(d) Substitute the three working formulas into the check formula and show 
that the result reduces to an identity, thus justifying the term “check 
formula.” 

(e) Note that later, in the numerical solutions of general right spherical 
triangles, such check formulas will be twice applicable: (1) as a check on the 
working formulas before evaluation; and (2) as a check on the numerical 
evaluation, since the computed answers must satisfy the check formula 
numerically. 

6. Proceed as in Problem 5 for a general right spherical triangle in which the 
known parts are: 

(a) The angles on the hypotenuse. 
(b) The hypotenuse and an adjacent angle. 
(c) The hypotenuse and a leg. 
(d) A leg and the angle opposite. 
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7. Prove that a leg of a general right spherical triangle cannot equal the 
hypotenuse. 

8. In each of two separate figures represent a sphere by means of a circle G 
in the plane of the paper. In each figure let the vertex B of a right triangle A BC 
be at the top of G and let the hypotenuse c = 135° lie along G to the left and 
below B. Then: 

(a) In Figure 1 let the angle at B equal 30° and in Figure 2 let the angle 
at B equal 150°. 

(b) In each figure locate a pole of the side a and, using these points, sketch 
the sides b of the right triangles ABC. 

(c) For each figure find side } as an arc function. 

(d) Comment on the answers for c in the light of the sketches. 

11. Napier’s Corollaries 1 and 2 

All five general parts of a general right spherical triangle can be repre- 

sented by an angle in either the first or second quadrant. When a par- 

ticular unknown part of the triangle is to be obtained through its cosine, 

secant, tangent, or cotangent, there will be no uncertainty as to the 

quadrant of the required arc function. All four of these functions are 

_ positive in the first and negative in the second quadrant. Consequently, 

in this case the required part will be in the first or second quadrant ac- 

cording as its function is shown to be positive or negative, respectively. 

When, however, a particular unknown is to be found from its sine or 

cosecant, we must find some way to dispel the uncertainty as to the 

quadrant of the required part. The sine and cosecant are positive in 

both first and second quadrants and, therefore, such an inverse function 

of a positive number can yield an angle in each quadrant. The follow- 

ing two relations will immediately pick out the one proper answer 

whenever a unique answer fails to exist on the basis of the computa- 

tions alone. Since they are immediate consequences of Napier’s Rules, 

we shall refer to them as Napier’s Corollaries. 
Naprer’s Corotuary 1: In any general right spherical triangle, a leg 

and its opposite angle lie in the same quadrant (either both are less or both 

greater than 90°). 
Naprer’s Corotuary 2: In any general right spherical triangle, the 

hypotenuse is in the first quadrant (less than 90°) if the quadrants of the 

two legs are the same (both less than or both greater than 90°); and in the 

second quadrant (greater than 90°) if the two legs are in different quadrants 

(one greater and the other less than 90°). 

The first corollary follows from a consideration of Formula 7, in 

step 12 of section 8: 

cos A = cos asin B, or sin B = cos A sec a. 
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Since the left side must always be positive, the signs of the factors on 

the right must be the same. This means that the quadrants of A and a 

must be the same. The like must obviously hold for B and b. 

The second corollary follows from Formula 5: 

cos c = cos a cos Db. 

If the legs are in the same quadrants, the factors in the right member 

will be either both positive or both negative. In either case the result 

will be a positive cos c and hence a first quadrant c. If the legs are in 

different quadrants, the signs of the factors in the right member will be 

opposite, yielding a négative cos c and thus a second quadrant c. 

12. Napier’s Corollaries 3 and 3 A* 

With Napier’s Rules amplified by Napier’s Corollaries 1 and 2 we 

are in a position to solve general right spherical triangles numerically. 

Before proceeding to this, however, a third corollary should be discussed. 

It is not essential to the numerical solution of single right spherical 

triangles, but it is most helpful in the solution of general triangles by 

means of pairs of right spherical triangles. Furthermore, this third 

corollary provides a desirable analogue to the plane-right-triangle fact 

that the hypotenuse exceeds either leg. 

In plane geometry, from a given point to a given line, not through the 

given point, there is but one perpendicular distance. This unique per- 

pendicular distance is the shortest distance between the point and the 
line. In spherical geometry, however, between a given point and a given 

great circle, not through the point, there are, in general,t two perpen- 
dicular distances. This is so because of 

the fact that in spherical geometry two 

great circles meet in two points, whereas 

in plane geometry two straight lines meet 

in but one point. (Cf. Introduction, 6 ce.) 
In Figure 77, A and a are the given 

point and great circle, respectively. Then, 

if P is the pole of a, the great circle 

through P and A is perpendicular to a. 

(Cf. Introduction, 6 f.) The two per- 

pendicular distances from A to a are the 

supplementary ares AD, and APD.. Figure 77 

* This corollary can be postponed if desired and studied when referred to. 
t When the given point is a pole of the given great circle, all great circles through the 

point are perpendiculars to the given great circle. (Cf. Introduction, 6 f.) 
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It is natural to inquire how the lengths of these two perpendicu- 
lars compare with the lengths of all other distances between A 
and a; ie., with the lengths of all other great-circular arcs between 
A and a. The answer, which is the spherical-geometry analogue 
of the plane-geometry theorem, “The unique perpendicular is the 
shortest distance between point and line,” is to be found in what we 
shall call 

Napipr’s Corouuary 3: Of all the great-circle distances between a 
general point and a general * great circle on a sphere, the two perpendicu- 
lar distances are extreme distances. That is, the smaller (the one not con- 

taining a pole of the given great circle) is the least possible distance and the 

larger (the one containing a pole of the given great circle) is the greatest 
possible distance. 

Figure 78 is the same as Figure 77 with the addition of any other great 
circle through A, cutting a at Cy and C2. 

AC, is then the hypotenuse of two right 

spherical triangles, in one of which (I) 

the shorter perpendicular, p = ADy,, is a 

leg and in the other of which (II) the 

longer perpendicular, p’ = APD», is a 

leg. By Napier’s Rules for right triangle I: 

cos AC, = cos AD, cos C,Dy,. 

Since cos C,D; is numerically less than 

one, cos AC; will be numerically less than 

cos AD,, and therefore AC, will be closer Ficure 78 

to 90° than is AD;. But, since AD, is 

less than 90°, AC; will exceed AD, or, AD; = p, the shorter perpendicu- 

lar, will be less than AC,, which is any other distance from A to a. Simi- 

larly, in right triangle II AC; is closer to 90° than is the perpendicular 

APD;. But, since APD, is greater than 90°, this means that AC, is 

less than APD», or APD2 = p’, the longer perpendicular, will be greater 

In terms of right triangles this third corollary states that: 

The hypotenuse is greater than each leg tf each leg 1s less than a quadrant. 

The hypotenuse is less than each leg if each leg is greater than a quadrant. 

The hypotenuse is between the two legs if one leg is less and the other leg 

is greater than a quadrant. 

* Cf. note t on page 50. Then all great-circle distances are equal and perpendicular. (Cf. 

Introduction, 6e.) Here, then, the two extremes coalesce, pinching all the other distances 

between them. 
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are cosine 

FIGURE 79 Figure 80 

Not only are the two perpendiculars AD; and APDz» extreme distances 
from A to D,C;Dz, but there are no other extreme distances from A to D,C,D». 
In other words, Figure 79 correctly shows the variation of the are AC; as 
C, moves from D, to D2 along the given great circle Di:\C:D2. The situation 
in Figure 80 is impossible. Since 

cos AC; = cos AD, cos CiD,, 

where AD, is fixed, 

cos AC; = k cos C,Dy, 

where & is the constant cos AD;. This shows that AC, has extreme values 
when C; is at D; (C:Di = O and AC; = AD,) and when C; is at Dz (C\D, = 
180° and AC; = AD») and under no other circumstances. The importance 
of this lies in our ability to state: 

Ficure 81 FIGURE 82 

Naprer’s Corotiary 3 A: If two great-circular arcs from A to the given 
great circle DiC,D2 are equal, they must straddle either p, the shorter perpen- 
dicular from A to the given great circle D:CD2, or p’, the longer perpendicular 
from A to the given great circle D\CiD2, where by 

Derinition: Two arcs shall be said to straddle a third arc ¢f all three arcs 
meet in a point, and if the third (straddled) arc lies within an angle less than 
180°, whose sides are the first two (straddling) arcs. 
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distances from 

Atoa 
arc cosine curve 

FIGURE 83 

Figure 81 illustrates two arcs, m and n, straddling the are p. Figures 82 
and 83 illustrate the truth of the restatement of the third corollary. As C 
(on the given great circle a) moves continuously from D, (the foot of the 
shorter perpendicular from the given point A to the great circle a) to D; 
(the foot of the longer perpendicular from A to a), the arc AC varies con- 
tinuously between the two and only two extreme values p and p’ and back 
again to p. Then, since the distance from A to a is not constant, if arc AE 
equals arc AF, the arc from A to the great circle a must first decrease and 
then increase (or vice versa) as # moves around on the great circle a to F. 
In so doing these arcs must pass through an extreme value which can only 
be either p or p’. 

13. Problems on Sections 11 and 12 

1. Find the leg 6 of the right spherical triangle ABC in which c = 120° and 

B= cot C +/2)- 

2. In aright spherical triangle one leg = 150° and the hypotenuse = cot7/2. 
Find the angle opposite the given leg explicitly and find the other unknown 
parts as arc functions. 

3. In a right spherical triangle the hypotenuse = tan 2 and one leg 

= tan-\/3/2. Solve the triangle, finding explicit values for two unknowns 
and an are function for the third. 

4, Show that the hypotenuse of a general right spherical triangle is not 
necessarily the longest side. 

5. Prove that the hypotenuse of an isosceles general right spherical triangle 
cannot exceed 90°. 

Derrnition: An isosceles spherical triangle is one in which two sides are equal. 
(Cf. section 20.) 
Note problem 7 in section 10. 

6. If the altitude from vertex A of any spherical triangle be drawn, state and 

prove by Napier’s Corollaries the conditions, in terms of the angles B and C, 

required for this altitude to fall inside or outside the triangle. 

7. By Napier’s Corollaries state the conditions on the hypotenuse of a general 

right spherical triangle for the altitude to the hypotenuse to fall inside or out- 

side the triangle- 
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8. Find the length, in terms of an arc function, of the altitude onto the 

hypotenuse of the right spherical triangle whose hypotenuse is 60° and one of 

whose angles is 135°. 

9. Two great circles, G; and G2, meet at an angle of 60°. A point A on Gi 

is tan1/2 from one intersection of G, and Gz. What is the shortest great- 
circle distance from A to G2? What is the longest distance from A to G2? 

10. Two great circles, G, and G2, meet at an angle of 120°. A point A on G, 

is cot/2 from one intersection of G: and Gz. What is the shortest great- 
circle distance from A to G2? What is the longest distance from A to G2? 

14. Numerical Solutions of General Right Spherical Triangles 

Having derived general formulas connecting parts of general right 

spherical triangles, we shall now show how to use these tools to compute 

numerical measures of unknown parts of particular general right tri- 

angles; i.e., right triangles two of whose parts other than the right angle 

are given numerically. Because of the length of most of the problems 

in spherical trigonometry and the many numbers involved, it is essen- 

tial to adopt, and rigidly adhere to, certain arbitrary conventions of pro- 

cedure which will be described in detail here and in later sections. The 

detailed nature of these conventions of procedure may at first be irk- 

some. Experience has shown, however, that the time and pains taken 

to carry out these procedural details are many times repaid in the clarity 

of understanding of the problem and in the accuracy of numerical re- 

sults. 

There are three distinct parts to the procedure in solving any spheri- 

cal triangle: 

ParTI: Selection of proper formulas based upon a conventionalized 
sketch. 

Part II: Construction of a particular form, based on the formulas se- 

lected, and required for the numerical computation. 

Part IIT: Performance of the computation by means of logarithms, natural 

functions, or slide rule, as is required in the statement of the 
problem or as is consistent with the accuracy of the data. 

This procedure is illustrated part by part in the example below. The 

general description of each part of the procedure is given directly below 

the illustration of this particular part to emphasize the proper sequence 

of steps. There follow then illustrations of other examples exactly as the 

student will perform them; i.e., without the description of the parts of 
the procedure. 

EXAMPLE 1: Solve the right spherical triangle in which the hypotenuse and 
an adjacent angle are, respectively, 52° 29’ 21” and 172° 50’ 12”. 
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Part I: Selection of the Proper Formulas. See Figure 84, in which the 
given angle is lettered A. 

sin a= sin A sin ¢ 

tanb = cos A tanc, cos A= tanb cotc 

cot B= tan A cosc, cosc = cot AcotB 

(1) A right spherical triangle is sketched at the right margin of the paper. 
This triangle is lettered, a square is placed inside the right angle C, the letter 
C is neatly crossed out, and the prefix “co” 
is written before the letters representing the coB 
hypotenuse and the adjacent angles. 

(2) On this sketch the letters representing 
the given parts of the triangle are encircled. toc 

(3) A Napier’s Rule formula is written for 

each one of the unknown parts in turn. The Wy 
particular Napier’s Rule formula used in each 
case 1s that one which involves the two given and b 
the one required part. When inspection shows Figure 84 
(as in the case of the first formula written) that 
the particular required part is the middle part, this formula is written be- 
ginning at the left margin and is then underscored. When inspection shows 
(as in the case of the formulas for 6 and B) that the required part is not the 
middle part (i.e., the given parts do not straddle it), this formula is first 

written a formula’s length to the right of the left margin, and it is then 
rewritten in the form solved for the particular unknown in question and on 
the same line but beginning at the left margin, where, in this solved form, 
it is underscored. The given parts of the triangle should be represented at 
this stage by their letters and not by their given numerical values. 

The final result of Part I of the procedure should always be, in addition 
to the properly labeled sketch, a set of three underscored formulas appearing 
on successive lines and beginning at the left margin. Each such underscored 
formula 

(1) should be solved for one (and a different one) of the unknowns in 
terms of just the two given parts of the triangle; 

(2) should be solved for that particular function (not its reciprocal func- 
tion) appearing in the first (un-underscored) writing of the formula if the 
first formula had to be rewritten; 

(3) should contain no fractions; 

(4) should contain the known quantities on the right side of the equality 

sign in the same order. As a check it will be observed that no function of a 

known quantity is repeated. 

Part II: Construction of the Form for Computation by Logarithms 

Ae= 172° 50’ 12” log sin log cos (—) log tan (—) 

em 2°29) 21” log sin, log tan log cos. 

log sin 

log tan (—) 

log cot (—) 
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(1) The letters representing the two known parts are equated to their 

given numerical values on successive lines at the left margin. 

(2) At the right of each known part is written the label for the particular 

function required to evaluate the first of the underscored equations in Part Ie 

If inspection of the quadrant of a known part indicates that the sign of the 

particular function labeled is negative, a minus sign in parentheses is written 

immediately after the label. The sum of these two log functions is then in- 

dicated by writing on the third line in this column the label of the log func- 

tion of the unknown being evaluated by this first underscored equation. If 

this sum involves an odd number of minus signs, a minus sign in parentheses 

is placed immediately after this label to indicate that the value of this partic- 

ular unknown must-be in the second quadrant. At the left margin of this 

third line there is then written the letter representing the unknown in the 

first underscored equation and an equality sign is placed after it. 
(3) Leaving spaces adequate for the later writing in of the values of the 

labeled log functions in column two, the above procedure is repeated for 
each of the other two underscored equations in Part I. In order to assign 
a separate line for each part of the triangle, the sum of the log functions and 
the letter representing the corresponding unknown are written on the fourth 
line for the unknown in the second underscored equation and on the fifth 
line for the unknown in the third underscored equation. 

(4) A rectangle is drawn around the labeled spaces for the unknown parts 

of the triangle to indicate that these are to be the answers. 

Features to be noted at this stage: 
1. Each part of the triangle has a line devoted to it solely. 
2. Equality signs are used only in the first column to label the actual 

values of the parts of the triangles. In the other columns the particular log 
functions appearing there label the numbers to be filled in later from tables 
as the corresponding log functions of the part of the triangle on the same line. 
Hence, no equality signs are needed in these other columns. 

oe Minus signs in parentheses are placed after all log-function labels if the 

corresponding trigonometric functions themselves are known to be negative. 
4, No log function is yet evaluated from tables at this stage but adequate 

spaces are left for this purpose. This evaluation from tables (Part III) is 

not to be started until the entire log form is complete. 

Part III: Logarithmic Evaluation 

A = 172° 5012” log sin 9.09587 log cos (—) 9.99659 log tan (—) 9.09927 

c = 52°29’ 21” logsin 9.89940 logtan 10.11485 log cos 9.78455 

a = 174° 40’ 35” log sin 8.99527 ve 

b = 127° 43’ 42” log tan (—) 10.11144 

B= 94° 22'34” log cot (—) 8.88382 

Features to be noted at this stage: 
1. All the required log functions of the first given part of the triangle are 

to be evaluated before any log function of the second given part is looked up. 
In other words, the log form is to be filled in by rows, not by columns. 
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2. If an unknown is evaluated from a log function marked with a minus 
sign, that unknown must be in the second quadrant. 

3. The quadrants of 6 and B are determined from the signs of their re- 
spective functions. 

4. The quadrant of a is not determined from its function but by means of 
Napier’s Corollaries. This will always be the procedure for answers evalu- 
ated from the sine or cosecant. 

5. The minus tens implied after each of the logarithms in the above 
solution are omitted because of lack of space and because a person familiar 
with logarithms readily understands that these minus tens are implied. 

Slide-Rule Evaluation 

If the data of a right spherical triangle to be solved are given only to 
within multiples of ten or fifteen minutes, computation by slide rule will 
give answers about as accurate as the data warrant. One advantage of 

slide-rule technique is the rapid practice in familiarizing the student with 

the theory, since so much less time is taken in the actual computation 
than when logarithms are used. The following example illustrates the 

proper procedure in the case of slide-rule computation. 

EXAMPLE 2: Solve with slide rule the right sphert- 
cal triangle whose hypotenuse and one leg are re- 
spectively 78° 30’ and 113° 20’.* 

Referring to Figure 85, in which the given legis (€o¢ 
lettered b, we have 

coB 

a 

cos A = tan bcotc 

cosa =secbcose cose = cosacosb © WY 

sin B =sinbesce sinb=sinc sin B icons 5 

cos A = tan 113° 20’ cot 78° 30’ = — aes = 118° 10’. 

cosa = sec 113° 20’ cos 78° 30’ = — aaa 120° 10’. 

sin B = sin 113° 20’ esc 78° 30’ = aa = 110° 30’. 

Features to be noted: 
1. The procedure in Part I (the selection of the proper formulas) is 

exactly as in example 1 and is to be followed in all examples regardless of the 
method of computation of the numerical results. 

2. Functions of angles greater than 90° were reduced to equivalent func- 
tions of angles less than 90° and all functions greater than one were replaced 
by reciprocals of functions less than one, as such angles and functions are 

more easily dealt with on the slide rule. 

3. The angle B was chosen in the second quadrant because of Napier’s 

Corollary 1 and because the opposite side b was given in the second quadrant. 

* A discussion of this combination of data will be made in due course in section 16 a. 
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4. A separate line was used for the computation of each unknown and 

this computation was completed on this one line. 

5. Answers, as always, were enclosed by a rectangle. 

If the trigonometric functions of the given parts of a right spherical 

triangle to be solved have readily computable exact values, the student 

should, of course, use these exact values in the computation, postponing 

as long as possible the use of a slide rule or tables of natural functions. 

Example 3 is a case in point. 

EXAMPLE 3: Solve the right spherical triangle whose two legs are equal, re- 

spectively, to 150° and p.v. cot 2.* coB 

Referring to Figure 86, in which the 150° 
side is labeled a, we have coc 

® 
cos c = cosacosb 

cot A= cotasind’ sindb=cot A tana © WY 

cot B= sinacotb sina= cot B tanb coA 
FIGURE 86 

oD, =e Pre pee : £3 ° oes —V/3 _—-vV15_—0.776 =cose; 
cosc = cos 150° cos cot? 2 = ane x Vi = ; 0:7766 2 tose: 

: 1 —V/15  —0.776 =cot A; 
= ) —t area ee = ; , cot A = cot 150° sin cot! 2 4/3 X ; = — 0.7766 = cot A. 

141° 00’ 
140° 57’ 
127° 50’ 
127° 50’ 
45° 

c 
c 
A 
A 
B cot B = sin 150° cot cot?2 = 4X2=1=cotB 

Features to be noted: 

1. The selection of the proper formulas is exactly as in example 1. 
2. In the actual numerical computation a separate line is used for each 

part to be computed, and the computation for each such part is completed 
on this one line. 

3. The first values for c and A are obtained by slide rule and the second 
by tables of natural functions. Only one set need be given. 

4. The answers, as always, are enclosed in a rectangle. 

15. Problems on Section 14 

1. In the general right spherical triangle A BC (X. C = 90°) the following parts 
are assumed given. Draw and properly label the figure. According to the 
procedure outlined above, find the formulas from which each unknown could 
be computed: 

(a) a, B. (d) a, b. 
(b) c, a. (e) c, B. 
(c) A, B. 

* pv. = “principal value.” (Cf. Introduction, 17, example 1.) For positive arguments 
principal values are first quadrant. 
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2. Inthe general right spherical triangle A BC (X. C = 90°) the following parts 
are assumed given. Construct the complete form, outlined above, which should 
precede the actual numerical calculation of the three unknown parts: 

(a) ¢, b. (d) c, A. 
(b) A, b. (e) A, B. 
(c) a, 6. 

3. Solve the following right spherical triangles by slide rule: 

(a) A = 70°, c= 150°. (d) A= 63°20’, B = 138° 30’. 
(b) a = 50°, b = 25°. (e) b = 135° 40’,c¢ = 72°30’. 
(¢) A-= 110°, db = 37°. 

4. Solve the following right spherical triangles by logarithms. Check the 
working formulas at the outset, and later the logarithms, by means of the check 
formula discussed in problems 5 and 6 in section 10. 

(a) a = 67° 23’ 14”, b = 18° 42’07”. (d) b= 152° 00’ 28”, c = 147° 13’ 38”. 
(b) A = 21°09’ 18”, c¢ = 54°20’ 34”. (e) B= 93°14’ 52”, c= 175° 48’ 10”. 

(c) A = 67°51 15”, B = 37°19’ 37”. (£) c= 65°14’ 18”, A = 113° 19’ 42”, 

16. Ambiguous General Right Spherical Triangles 

In the illustrative examples of the preceding section the case in which 

the data comprised a leg and opposite angle was carefully avoided. 

Now consider: con 
EXAMPLE 4: Solve the right spherical triangle in 

which a leg and opposite angle are respectively coc 
124° 59’ 33” and-101° 40’ 19”. ® 

Referring to Figure 87, in which the given leg 
is labeled a, we have Ly 

sinb = tanacot A 7 

sin B= sec acos A cosA=cosa sin B 
: : . : 5 FIGure 87 

sinc =sinacsc A sina =sin Asine 

Since each required part is to be obtained from the sine function, the 

quadrant of each unknown part is uncertain. The data are not sufficient 

for invoking Napier’s Corollaries, for the data already satisfy the first 

corollary (otherwise the triangle would be impossible), and to apply the 

second corollary we should have to know the quadrant of one of the un- 

known parts. 

A consideration of the geometric requirements for the solution of such 

a triangle will resolve its difficulties. In this connection the following 

definition will be useful: 

DeEFInITION: When two great circles intersect on a sphere, the portion of 

the surface of the sphere enclosed by half of each of the two great circles 18 a 

lune. (See Figure 88.) The sides of the lune are the halves of the two 

great circles bounding the lune, the angle of the lune is the angle in 
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which the sides intersect, and the vertices of the lune are the points of . 

intersection of the sides. 

FIGuRE 88 FIGURE 89 

To know angle A of a general right spherical triangle to be solved is 

to be given a lune of angle A. In Figure 89, the sides of such a lune are 

represented by F and G. To be given the side a, which is to complete 

the right triangle, is to be required to fit this are a between the sides of 

the lune so that it will be perpendicular to one of them, assumed F in 

Figure 89. Since (by Introduction, 6 7), all the great circles which are 

perpendicular to side F of the lune meet in the poles of F, the side a 

must lie on a great circle through P, the pole of F which is nearer 

side G of the lune of angle A. A question and an observation are sug- 

gested at this point: 

1. Is there a great circle through P whose are between the sides F 

and G of the lune of angle A is the given are a? 

2. If there be such a great circle, PGiF1, other than the polar of vertex 

A, there will be two distinct right-triangle solutions, AFyG;, A'F1G,, 
possessing the given parts A and a. A 

The answer to the above question is 

to be found in the following theorems, 

which are largely consequences of Napier’s 

Corollary 3. 

THEOREM 1: The polar of the intersec- 

tion of two great circles is the unique great A L 
circle perpendicular to both the intersecting 

great circles. 

This polar great circle (see Figure 
90) is perpendicular to both given circles 
by Introduction, 6f. Any other great Figure 90 
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circle perpendicular to both of them would have to contain their poles (by 
Introduction, 6 7) and would then be the unique great circle determined by 
these two poles. 

THEOREM 2: That arc of the polar of the vertex of a spherical angle which 
vs included by the sides of the angle has an extreme value for all great-circular 
ares between the sides of the angle and perpendicular to one of them. If the 
angle is acute, the included polar arc is a maximum; af the angle is obtuse, 
the included polar arc is a minimum. 

In Figures 91 and 92, R and S are the sides of the spherical angle A. 
QPGF is the polar of the vertex A, where P and Q are the poles of R and S, re- 
spectively, and F and G are the intersections of this polar of A with R and S, 
respectively. 

FIcuRE 91 FIGuRE 92 

At F; (not at 7) on R draw the arc perpendicular to R. This arc passes 
through P but not Q, by Introduction, 67 and the above theorem. Let this 
are meet SinG;. Then: 

Angle A acute (Figure 91): P is outside /G, by Introduction, 6 7: 
; PG, > PG, by Napier’s Corollary 3 

PF, = PF, by Introduction, 6 e 
G, F, < GF, by subtraction. 

Angle A obtuse (Figure 92): P is inside FG, by Introduction, 6 7: 
PES > PG 
PF, = PF 

FG, > FG, by addition. 

TuroreM 3: A right spherical triangle for which a leg and opposite angle 

are given will have: 

1. Two solutions, provided the given opposite parts are in the same 

quadrant, and provided the given leg is less than the given opposite angle 

when these parts are acute or greater than the given opposite angle when 

these parts are obtuse. 
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2. One solution, a special right triangle, when the opposite parts are 

equal. 

3. No solution in all other cases. 

This is an immediate consequence of the previous theorem, Introduction, 
67, and the obvious geometry of the lune. 

Because right spherical triangles to be solved, given a pair of opposite 

parts, generally lead to two distinct solutions, this case is termed the 

case of ambiguous right triangles. ‘The existence of no solution can be 

detected from the computations (in case the student has failed to ob- 

serve this from the above geometrical discussion) by a log sine’s be- 

coming positive, or by the sine’s becoming greater than one, which are 

obvious impossibilities. When the log sine of any computed part be- 

comes zero, or the sine one, the case of a unique solution, a special right 

triangle, will be detected. In all other cases both the (supplementary) 

values, computed from the sine function, should be offered for each un- 

known. These pairs of values for the computed parts must then be properly 

and explicitly grouped, according to Napier’s Corollaries 1 and 2, to form 

two right-triangle solutions. 

The solution of example 4 is here completed to emphasize the need 
for grouping the values of the unknown sides to form actual triangles: 

a = 124°59’33’’ log tan (—) 10.15489 log sec (—) 10.24149 logsin 9.91340 
A= 101°40’19” log cot (—) 9.31509 log cos (—) 9.30602 log ese 10.00908 

_ § 17°09'51” : 
br ecenigt log sin 9.46998 

20°39/28” : eee 
Bs Hevoreset log sin 9.54751 

rae dee 
IPEMIBOR” log sin 9.92248 

a= 124°59'33””, A1=101°40’19”;|bi= 17°09'51”; By= 20°39’28"'; cx= 123°13/29”” 

d2= 124°59'33"; A2=101°40'19” ; }b>= 162°50'10”;; Bo=159°20'32” co= 56°46/29"” 

The given parts are listed with both sets of the computed unknowns, in 
order to emphasize the application of Napier’s Corollaries. 

Both values of each unknown were found from the tables, which accounts 
for the pairs of values for the same part not always being exactly supple- 
mentary. 

16a. Other General Right Spherical Triangles Leading to No Solution 
The force of the term “Ambiguous” in the classification “Ambiguous 

General Right Spherical Triangles,” those in which the data comprise a leg 
and opposite angle, is on the possibility of two solutions and not on the possi- 
bility of no solution. There is, in fact, one other case, not included in the 
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term “Ambiguous General Right Spherical Triangle” and presumably al- 
ready disposed of,* in which no solution may exist. 

The emphasis in the so-called ambiguous case has been on the fact that 
the data included a pair of opposite parts. This should make the student 
suspicious of all such spherical triangles (a fairly safe rule), including, for 
Instance, the case of a right spherical triangle in which the hypotenuse is one 
of the given parts. Obviously, there are but two types: (1) an angle, and 
(2) a leg as the second given part, in addition to the assumed right angle. 
Since we did not observe that these cases failed to give a figure from which 
Napier’s Rules formulas could be derived, it would seem reasonable to apply 
these rules formally to the two cases under suspicion: + 

To solve the right triangle given c and A: co B 
Referring to Figure 93: 

sin a@ = sincsin A COC 

cot B= cosctan A, cosc = cot A cot B 

tan b = tanccos A, cos A = tanb cotc 

These formulas introduce no difficulties. a < 
Sin a, being the product of two numbers co 
numerically not greater than one, is not b 
greater than one, and the tangent and FIGuRE 93 
cotangent functions are unrestricted in 
value. Napier’s Corollaries 1 and 2 resolve any uncertainty in the quad- 
rant of a. Geometrically the exoneration of this case is immediately ac- 
complished by noting that a unique perpendicular from B to the opposite 
side always exists. 

To solve the right triangle given ¢ and a: coB 
Referring to Figure 94: 

cos B = tan a cot ¢ 

cos b = sec acosc, cosc = cosa cosb 

sin A = sinaescc, sina=sincsin A 

These formulas, however, certainly do not 
have solutions for aJl combinations of a and 
c. All unknowns are found from functions 
never numerically greater than 1, and each 
such function is the product of reciprocal 
functions of different arguments, which arguments could be so chosen as to 
make the products of the reciprocal functions numerically greater than 1. 
Accordingly, we see the algebraic necessity for the 

TuroreM: Right spherical triangles in which the hypotenuse and a leg are 

given have no solution unless the value of the hypotenuse is nearer 90° than is 

the value of the leg. hy, 

The geometric necessity for this theorem is apparent from Napier’s 

coA 

FicureE 94 

* Cf. e.g. example 2, section 14. 

+ In any event the results deduced for these two cases can be obtained by the methods 

employed in Appendix I for oblique ambiguous triangles. 
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Corollary 3. The given leg is one of the two perpendiculars to the side of 

the other leg and, hence, must be smaller than a given acute hypotenuse or 

larger than a given obtuse hypotenuse. The analogous plane trigonometry 

theorem is obvious. 

Summary of General Right Spherical Triangles: 

I. Data not containing opposite parts. 

A unique solution is always possible, as can be verified by actual geo- 

metric construction. 

II. Data containing opposite parts. 
A. Hypotenuse part of the data. 

1. Hypotenuse and angle given. 

A unique solution is always possible by the above. 

2. Hypotenuse and leg given. 

Unique solution, if and only if the hypotenuse is nearer than the 
given leg to 90°. See above. 

B. A leg and opposite angle given, “ambiguous case.” 

Two, one, or no solutions according to the previous section. 

17. Special Right Spherical Triangles 

Reference to the ten formulas for the solution of the so-called “gen- 

eral” right spherical triangles (see sections 8, 12) reveals the fact that 

some of these formulas (those containing tangent or cotangent func- 

tions) become meaningless for certain known parts equal to 90°. It is 

precisely for this reason that right spherical triangles have been divided 
into the two classes of ‘“‘general”’ and ‘‘special.” 

The ten formulas which Napier’s Rules summarize are certainly not 
formally applicable to right spherical triangles containing a leg equal to 90°, 
a second angle equal to 90°, or both a leg and opposite angle equal to 90°. 
(In the first case the sine of a side is apparently infinite, in the second case 
a side is apparently either 0° or 180°, and in the third case the sine of a side 
is the product of zero and infinity — whatever this can mean!) Further- 
more, in the derivation of these ten formulas precisely these cases, in which 
the formulas become meaningless, had to be excluded because of the degen- 
eration of the figures on which the derivations depended, that is, the triangle 
BDE ceased to exist (see Figure 75). Consequently, these ten Napier’s 
Rules formulas are logically as well as formally inapplicable. 

The class of special right spherical triangles, however, can immediately 
be disposed of without the use of any formulas. This might well be sug- 
gested by recalling a familiar example on the earth’s surface: Let the right- 
angle vertex C be the intersection of the equator with the northern half of a 
meridian. Then, if the vertex B on the equator is also a right-angle vertex, 
the angle A is obviously at the North Pole and the triangle is completely 
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determined when either a or A is given as the second known part besides 
the assumed right angle at C. 

All the above noted cases in which Napier’s Rules formulas fail to 
apply, either formally or logically from their geometric derivation, are 
disposed of by the first two theorems below: 
TueorEM 1: The measure of each side [angle] of a special right spherical 

triangle is the same as the measure of the angle [side] opposite. 

1. Let B in Figure 95 bea second 
right-angle vertex in the right spherical 
triangle in which C is a right angle. 
Then the vertex A of the triangle is the 

A 

pole of the side a, by Introduction, 6 7. b 
2. Then, by Introduction, 6e, the 

theorem is proved for the parts C and 
c, and B and b. qc 

3. By Introduction, 6 7, the theorem is 
true for the parts A and a. Zs 

Note that this theorem includes the 
case in which all the angles are right, and 
therefore, all six parts = 90°. 

THEOREM 2: If any of the three sides FIGURE 95 

of a right spherical triangle equals 90°, 
the right spherical triangle is a special right spherical triangle. When a 

given 90° side is a leg, there is no solution possible, unless the hypotenuse 

also equals 90°, in which case there are infinitely many solutions. 

A 90° side is the hypotenuse c: 

1. If the vertex A (see Figure 96 a) is a pole of side a, the triangle ABC 
is a special right spherical triangle, by definition, as angle B is then a second 
right angle, by Introduction, 6 /f. 

A 

b A 

ie C Se} 

(a) (b) 
FIGURE 96 

2. If vertex A is not a pole of sideva (see Figure 96 5), let the polar of A 

be d, which is therefore not identical with the great circle of a. B is an 

intersection of d with the great circle of side a. Since c = 90°, B lies on d, 

by Introduction, 6 e. Therefore, B and B are identical, for each lies on d 
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and on the great circle of side a. But B is a pole of 6, as the poles of 6 lie 

on d (by Introduction, 6 *) and on the great circle of side a (by Introduc- 
tion, 67). Therefore, B is the pole of b and the right spherical triangle is a 
special right spherical triangle, by definition, as angle A is then a second right 
angle, by Introduction, 6 f. 

A 90° side is a leg b: 

1. In Figure 97 let A be the pole of side a. Then are AC is perpendicu- 

lar to side a, by Introduction, 6f. Hence, A is 
on the are AC, as there is but one great circle at 

C perpendicular to side a. Then, A and A are 
identical, as each is 90° of are from C in the 
same direction on the same great circle. There- 
fore, A is the pole of a and angle B is a second 
right angle. 

2. Since all distances from a pole to points on 
its polar are equal to 90°, the given hypotenuse 
must equal 90° for any triangle to exist. But 
if c is given equal to 90°, B can take on any posi- FIGURE 97 
tion on the side of a. 

There is one more possible case in which a pair of given parts of a 

right spherical triangle (besides the assumed right angle C) determines 

a special right spherical triangle. In this case the Napier formulas 

formally apply, and the non-existence of a figure adequate for the deriva- 

tions of these formulas for this case might be difficult to detect. This 

case is disposed of by 

THEOREM 3: A right spherical triangle for which a pair of opposite 

parts have the same measure is a special right spherical triangle. (Con- 
verse of Theorem 1.) 

1. The case in which the opposite parts of a given same measure are the 
hypotenuse and the given right angle has been disposed of in Theorem 2. 

2. In Figure 98 the leg a and opposite . 
angle A are assumed of equal measure. 
AXA’ and AYA’ are two great-circular 
arcs meeting in the given angle A, as- 
sumed acute. The figure and reasoning 
for A obtuse are entirely analogous. For 
angle A, a right angle, the triangle is 
special by definition. P and Q are the 
poles of AXA’, AYA’, respectively. Xand we 
Y lie on the great circle through P and Q. hh 
Then angles at X and Y are right angles, 
the are XY equals angle A, and ‘the tri- 
angle AXY, containing the given parts 
angle A = side a, is a special right spheri- N 
cal triangle. See Introduction, 6 f, 7. 
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3. No other right spherical triangle containing angle A = side a is pos- 
sible, for: 

a. Let X:¥1 be any other are between the sides of angle A and making a 
right angle at X; Then X,Y; passes through P but not Q, by Introduc- 
tion, 6 7, and hence is not perpendicular to AYA’. 

b. PY, > PY by Napier’s Corollary 3. 
c. By Introduction, 6 f, PX; = PX. Therefore X,Y, < XY. Hence Xi¥; 

is not equal to A. 

Summary of Right Spherical Triangles 

Right spherical triangles have now been discussed completely. They 

have been divided into two classes, special and general, and the methods 
of solution for each class have been discussed in detail. 

Given any particular right spherical triangle to solve, the student 
should: 

1. Classify the given triangle mentally as either special or general by 
means of the above three theorems, and then 

2. Solve the given triangle by 

a. observation based on the results of the above three theorems, if the 

triangle is seen to be special, or by 

b. computation based on Napier’s Rules formulas, if the triangle is 
seen to be general. 

If a student should immediately apply Napier’s Rules to a given special 

right spherical triangle to be solved, he would soon be made to suspect 

what he should have mentally observed at the outset, namely, that the 

triangle, being special, should be solved mentally. 

18. Problems on Sections 16 and 17 

1. If a leg and opposite angle of a right spherical triangle are tan (— tvV3), 

tan-! (— 1/6), respectively, what must the hypotenuse, other leg, and the angle 
opposite the other leg be to complete, with the above parts, a right spherical 
triangle? Express two unknowns explicitly and the third as an arc function 
with its quadrant specified if necessary. Sketch. 

2. Find and properly group all sets of parts of the right spherical triangle A BC 
in which one angle and the side opposite equal 45°, 30°, respectively. Express 
each part either explicitly or as an arc function. In the latter case indicate 

the proper quadrant when the value of the particular are function does not 

determine it. Sketch. 

3. Using the slide rule, find all possible solutions, properly grouped, for a 

right spherical triangle in which a leg and opposite angle are, respectively: 

(a) 25°, 28°. (ec) 3°45’, 22°30’. (e) 127° 20’, 127° 20". 

(b) 138°, 112°. (d) 67° 30’, 48° 20’. (f) 119° 40’, 72° 30’. 
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4. By logarithms, find all possible solutions, properly grouped, for a right 

spherical triangle in which a leg and opposite angle are, respectively: 

(a) 42° 16°25" 8 68" OF 40 (d) 107° 22’ 19’, 134° 18’ 06”. 

(b) 132° 28’ 43”, 116° 50’ 10”. (e) 23°00’ 42”, 78°14’ 17”. 

(c) 118° 17’ 25”, 93° 37’ 45”. 

5. Solve the right spherical triangles in which 

(a) a = 90° 00’ 00”, B = 132° 14’ 47”. 

(b) a = cos (— 3), A = cot (— 2/+/5). 
(c) &b = 118° 28’ 14”, c = 182° 14’ 18”. 
(d) ¢ = 90° 00’ 00”, B = 125° 18’ 49”. 
(e) a = 72° 30’, c= 65° 15’. 
(f)a@ = 90°, c= 120°. 

(g)b = tan?2, B= sec/5. 
(h) a = 90°, c = 90°. 

(i) a = tan 21/2, A = cos (— 4). 
(j) a= 90°, b = 90°. 
(k) @ = 138° 30’, c= 115° 15’. 

6. A lune of angle 42° is to be divided into two right triangles, one of which 
is to be twice the other in area, by a great-circle arc between the sides of the 
lune and perpendicular to one of them. Compute the length of this are. (See 
Introduction, 90.) Sketch. 

19. Quadrantal Spherical Triangles 

By Introduction, 9 f, the polar triangle of a right spherical triangle will 

have a side = 90°. 
DEFINITION: A spherical triangle which has a side equal to 90° is 

called a quadrantal triangle. 

By the reference above, the polar triangle of a quadrantal triangle 

is aright triangle. Consequently, if two parts of a quadrantal triangle 

(other than the 90° side) are given, the triangle can be solved by solv- 
ing its polar right triangle first. 

EXamPLe 5: Solve the spherical triangle in which an angle and adjacent sides 
are respectively 116° 25’ 43’, 90° 00’ 00”, and 73° 00’ 14”. - Referring to 

(b) co Cc’ 

¢ co A’ 

FIGURE 99 
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Figure 99, in which the labels for the given parts are A, c, and b respec- 
tively, we have 

cos A’ = cosa’ sin B’ 

tan 6’ = sin a’ tan B’ sina’ = tanb’ cot B’ 

cot _c’ = cot a’ cos B’ cos B’ = cot c’ tana’ 

a’ = 63°34'17” log cos 9.64844 log sin 9.95206 logcot 9.69638 

B’ = 106°59’46” log sin 9.98060 log tan (—) 10.51475 logcos (—) 9.46585 

A’= 64°48’32” log cos 9.62904 7 

b’ = 108°50'48” log tan (—) 10.46681 
Cr — 9851600" log cot (—) 9.16223 

a = 115°11/28” 

= 71°09/12” 

81°44’00” 

Features to be noted: 

1. Two figures were drawn: one for the triangle to be solved and another 
for its polar right triangle from which the Napier’s Rules formulas were 
selected. 

2. Primes are used to designate parts of a polar triangle. 
3. The values of the three known parts of the polar right triangle were 

found by the application of Introduction, 9 f. 

20. Isosceles Spherical Triangles 

The definitions and properties of isosceles spherical triangles are 

exactly those for isosceles plane triangles. 

Derinition: Isosceles spherical triangles are spherical triangles two 

of whose sides are equal. The equal sides are called the legs, the third side 

the base, the angles opposite the equal sides the base angles, and the angle 

between the legs the vertex angle of the isosceles spherical triangle. 

In general —i.e., except when the vertex is the pole of the base — 

there is through the vertex of an isosceles spherical triangle a unique 

great-circular arc perpendicular to the base and lying within the isosceles 

spherical triangle (see Napier’s Corollary 3, a). 

Derinition: In a general isosceles spherical triangle (one in which the 

vertex is not the pole of the base) the unique arc through the vertex perpen- 

dicular to the base and lying within the isosceles triangle shall be called 

the altitude of the isosceles spherical triangle from the vertex. 

Turorem: The base angles of an isosceles spherical triangle are equal, 
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and conversely, if two angles of a spherical triangle are equal, the triangle 

is isosceles with the legs opposite the equal 
A 

angles. 

As is shown in Figure 100, the unique 
altitude from the vertex of the isosceles spher- C b 

ical triangle divides this triangle into two 
right spherical triangles. The solutions of 
these two right spherical triangles by Napier’s 
Rules must be identical, since in the case of a 
either the direct or converse theorem, the gp € 
two right triangles have a pair of corres- Figure 100 
ponding parts respectively equal. 

Corotuary: The altitude from the vertex of an isosceles spherical tri- 

angle bisects the base and the vertex angle. 

This corollary follows immediately from the proof of the above theorem. 

The applications of the above theory are suggested by: 

EXxamPLeE 6: Solve the spherical triangle two of whose angles are 53° 18’ 42’ 
and whose included side is 132° 00’ 16”. 

Referring to Figure 101, in which the included side is Jabeled c, we have: 

cos C'/2 = sin A cos c/2 

cot b =cosAcotc/2 cos A = tanc/2 cotb. 

A = 53° 18’ 42” log sin 9.90412 log cos 9.77631 & 

c/2 = 66°00’ 08” log cos 9.60927 log cot 9.64853 °° 2y 

C/2= 70°57'59” log cos 9.51339 “i pie 

75° 06’ 20” log cot 9.42484 
75° 06" 20” 

= 141° 55’ 58” co A 

FicureE 101 

21. Problems on Sections 19 and 20 

1. If two sides of a spherical triangle are 45° and the third side is 60°, find 
the angles as arc functions and evaluate by means of slide rule or tables of 
natural functions. 

2. Solve the spherical triangle whose sides are respectively 45°, 90°, and 120°. 
Express the answers as arc functions and evaluate by slide rule or tables of 
natural functions. 

3. Solve the spherical triangle whose sides are respectively tan-12, 90°, 
tan (— 3). Express the answers as are functions and evaluate by slide rule 
or tables of natural functions. 

4. If in a spherical triangle two angles are 135° and the third angle is 120°, 
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find the sides as are functions and evaluate by slide rule or tables of natural 
functions. 

5. Solve the equilateral spherical triangle whose sides are each 60°. Express 
the answers as arc functions and evaluate by slide rule or tables of natural 
functions. 

6. If the base and vertex angle of an isosceles spherical triangle are cos Z 
and 120°, respectively, what could the other parts be? Express answers as 
properly grouped are functions (with quadrants indicated where necessary), 
and then evaluate by slide rule or tables of natural functions. Cf. Introduc- 
tion, 20, for the expression of the answers exactly as arc functions. 

7. If a side and adjacent angles of a spherical triangle are respectively 90°, 
45°, and 120°, find the other parts as arc functions and evaluate by slide rule 
or tables of natural functions. 

8. Solve the equiangular spherical triangle whose angles are each equal to 
135°. Express answers as are functions and evaluate by slide rule or tables 
of natural functions. 

9. Compute by slide rule or tables of natural functions that portion of the 
area of the whole sphere lying in the larger of the two spherical triangles for 
which a side and opposite angle are 135°, 150°, respectively, and a second side 
is 90°. 

10. Solve the following spherical triangles A BC by slide rule: 
(nye, = Hb = 90°, c= 130°. (e) a— 112°, B= 53°, C = 53°. 
(i) Sp) SS S74 Oi BS, oO Ssh 4S 10s, 
(c)a =b =c = 115°. (g) a = 127°, b = 90°, A = 160°. 
(d) A= B= C= 142°, (h) a = 51° 30’, b = 90°, C = 116° 45’. 

11. Solve the following spherical triangles A BC by logarithms: 
(a) a = 71° 21’ 38”, b = 90°00’ 00”, c = 154° 07 46”. 
(b)a = b=c= 94° 04’ 44”, 

(ce) @ = 55° 33’ 14”, B = 163° 29 43”, C = 163° 29! 43”. 

(d) 6. = 67° 00’ 40”, ¢ = 90° 00’ 00”,, B= 19° 18' 00”. 
(qVA = Bh = C= 62° 37.51". 
(f{)a = 90° 00’ 00”, c = 110° 11’ 30”, B= 130° 47’ 20”. 

22. Order of Magnitude of Parts of a Spherical Triangle* 

An interesting consequence of the above theory of isosceles spherical 
triangles is a very general theorem concerning any spherical triangle. This 
theorem (as was noted in the Introduction, 9 7) is usually proved entirely 
by solid-geometry methods, but it is more easily proved by referring to the 
spherical-trigonometry proof of the necessary properties of isosceles spherical 
triangles. Consequently, although this theorem is not a necessary part of 

the theory of right spherical triangles, it is presented here because its proof 

depends upon the above proved facts about isosceles spherical triangles. 

TuroreM: The order of magnitude of sides of a spherical triangle ts the same 

as the order of magnitude of the corresponding opposite angles, or 

IfA<B<C, thna<b<e, andifa<b<ce, thnA<B<C, The 

proof of this theorem rests upon the 

* May be postponed until referred to (e.g., in section 27), 
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Lemma: If two angles of a spherical triangle are unequal, the corresponding 

sides opposite are unequal and unequal in the same sense, or 

If A < B, then a <b, and conversely, if a < b, then A < B. 
1. In Figure 102, angle A is given less than angle B. At B construct 

angle B, = angle A and such that one side of 
angle B, is the side c of the triangle. 

2. Then the second side of angle B; will cut 
the side b at D between C and A. 

3. Then DB = DA by the above theorem 
about isosceles spherical triangles. 

Then CD + DB = 6. 
But CD + DB > aby Introduction, 9g. 
Therefore b > a, ora < b. 

4. The converse statement is proved by the Figure 102 
indirect method: Suppose when a < b that A were 
equal to B. Then, by the above theorem on isosceles triangles, a would be 
equal to b, thus contradicting the hypothesis. Suppose when a < 6 that A 
were greater than B. Then, by the above direct statement, a would be 
greater than b, which also contradicts the hypothesis. Consequently, the only 
other possibility when a <b, namely A < B, must be true. 
The proof of the theorem is accomplished by applying this lemma twice — 

once for A and B and again for B and C. 

The previously noted special case of an isosceles spherical triangle 

whose vertex is the pole of the base is obviously, by Introduction, 6 f, 

the case of a special right spherical triangle, for which see section 17. 

23. Problems on Chapter 2 

1. By Napier’s Rules formulas prove the theorem: The great circle bisecting 
a spherical angle is the locus of those points on the surface of the sphere which are 
equidistant from the sides of the angle; and the feet of the two perpendiculars from 
any point in this bisector of the spherical angle to the sides of the angle (one per- 
pendicular to each side) are equally distant from the vertex of the spherical angle 
along the sides of the angle. State the analogous theorem in plane geometry. 

2. By Napier’s Rules formulas prove the theorem: The angle bisectors of a 
spherical triangle are concurrent at a point on the sphere whose great-circle distance r 
from the three sides of the spherical triangle is given by 

A. 
tanr = tan 3 sm (s— a), 

where A is any angle of the spherical triangle, a is the side opposite this angle, 
and s is half the sum of the sides. (Cf. Appendix II, section 9, for r in terms of 
the three sides alone.) State the analogous theorem in plane geometry. 

3. By Napier’s Rules formulas prove the theorem: The great circle perpen- 
dicularly bisecting an arc of a given great circle is the locus of points on the sphere 
equally distant from the extremities of the given great-circular arc. Hence, prove 
the corollary: The perpendicular bisecting great-circle arcs of the sides of a spherical 
triangle are concurrent at a point equally distant from the vertices of the spherical 
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triangle. This point of concurrence is the pole of the small circle circumscribing 
the plane triangle of the vertices of the spherical triangle. State the analogous 
theorem in plane geometry. , 

4, Solve the following right spherical triangles by slide rule: 

(a) b = 65° 25’, B = 65° 25’. 
(b) a = 87° 42’, A = 91° 55’. 
(c) b = 90°00’, ¢ = 110° 30’. 
(d) b = 50° 10’, B = 73° 30’. 
(e) a = 62° 40’, ¢ = 187° 15’. 

(F) 6 = 122°30', ¢ = 72° 05’. 

(g). a = 140° 05’, B = 56° 45’. 

(h) 6 = 75°50’, B= 102° 39’. 

(i) 6 = 16° 22’, A= 90° 00’. 

oe 63 woot belo 0, 

5. Solve and check the following right spherical triangles by logarithms: 

(a) a = 137° 16’ 37”, A = 137° 16’ 37”. 

(b) 6 = 103°-02' 44”, ¢ = 80° 34’ 33”. 

fe)..@ = 168 30" .51"". A =<114°.52' 12’, 

(d) b = 88° 42’ 08”, 

(e) a = 58° 22’ 29”, 

(f) b = 90° 00’ 00”, 

B= 98° 31’ 49”. 

c = 141° 08’ 13”. 

A = 76° 52’ 24”, 

(g) a = 137° 40’ 28’, b = 100° 10’ 06”. 
(h) A = 15° 26’ 31”, B = 88° 56’ 48”. 
(i) ¢ = 97°36’ 14", A = 123° 45’ 43”. 
(j) & =.32°04' 57", B= 44° 28 42”, 



CHAPTER 3 

The Six Types of General Triangle 

Solutions 

24. The General Plan of Attack 

Derinition: Spherical triangles which are neither right, quadrantal, 

nor isosceles shall be termed general spherical triangles. 

Any general spherical triangle can be solved if any three of its six 

parts are given.* If any proper combination of three parts of a triangle 

is given, one, or at most two, triangles are geometrically determined, 

and hence the remaining three parts are computable. This statement 

will be verified by deriving below a method for solving each one of the 

six possible types of spherical triangles. 

The six types of solution can be accounted for in the following enumer- 

ation, in which s stands for a given side and a for a given angle of a 

spherical triangle: 

1 Case. No sides given: Three angles given: 

a... 

(Figure 103) 

® 

© 
Figure 103 

* The exception to this in plane trigonometry of no triangle’s being determined when the 
three given parts are all angles is not an exception in spherical trigonometry. In plane 
trigonometry there is a definite relation between the angles of a triangle (their sum = 180°) 
which determines the third angle from the other two. In spherical trigonometry, on the 
other hand, the relation between the angles (Cf. Introduction, 9 7) is not precise enough to 
determine the third angle from the first two. 
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C 

Two angles given b 

adjacent to the a 

given side: 6 

.8.a. 

- ‘ syceene Wee = Fiaure 104 2 Cases. One side given: 

Two angles given © 

not adjacent to b 
the given side: < 

8.a.a. © 

(Figure 105) @ 3 

Ficure 105 

A 

One angle given 

included by the 

two given sides: 

8.0.8. 
(Figure 106) 

@ 

2 Cases. Two sides given: Figure 106 
One angle given B 

not included by the 

two given sides: 

a.8.8. 
(Figure 107) ® 

Ficure 107 

1 Case. Three sides given: No angles given: 

e389. 
(Figure 108) 

6 Cases, total. Fiaure 108 

We shall treat these six types in three groups of two each as follows: 

Group I: s.A.S. AND A.S.A., yielding one solution. 

Grovr II: A.8.8. AND S.A.A., yielding no, one, or two solutions. 

Grovp III: s.8.8. AND A.A.A., yielding one solution. 
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All types of general spherical triangles will be solved by the same 

mothod: dropping an altitude to divide the triangle into two right ti- 

angles, whose solutions by Napier’s Rules will yield the solution of the 

general triangle. 

There are many other methods of solution varying for the particular 

casos of goneral spherical triangles. In fact there are several different 
mothods for each ease, ‘The use of these other methods involves the com- 
plicated dorivation of many new formulas, memorizing them, and knowing 
what formulas are to be used for the various types of general triangles. The 
question of any material lessening of numerical computation by means of 
these other methods is debatable, By solving al! spherical triangles by means 
of the same natural construction of an altitude (if needed) and the easily 
remembered Napier’s Rules for right triangles, the student has a simple 
and unified theory for the solution of any spherical triangle. Spherical 
trigonometry (in contrast with plane trigonometry) is too poor in theoretical 
ideas to warrant deriving the formulas of these alternate methods of tri- 
angle solution for their own sakes. These formulas have no applications 
aside from spherical triangle solutions, which can be as easily accomplished 
by the one essential idea: the right triangle. Many of these alternate meth- 
ods of solution of general spherical triangles are derived, discussed, and 
applied in Appendix Il, Here these alternate methods are available for 
the moro curious student to judge for himself of their value to him after 
he has first mastered the unified right triangle method advocated here for 
the solution of all spherical triangles, 

The several cases of general triangle solution are best described by 

showing illustrative examples worked out, followed by lists of statements 

eviling attention to the important features of the method. The figures 

drawn are in many cases conventionalized diagrams in the sense that, in 

goneral, no attempt will be made to picture obtuse angles as obtuse or 

sides greater than a quarter-cirele as such. Furthermore, altitudes will 

always at first be asswned to fall inside triangles. If, when part way 

through a problem, tis ts seen to be incorrect, a second figure taking this into 

account will be drawn, — The figure must always be drawn, but primarily 

to show the positions of the given parts relative to those to be computed. 

25. Group I: s.a.s. and a.s.a, 

Consider first the sas. ease, ‘The sole purpose of the construction 
is to draw an altitude of the triangle 

so as to produce a right triangle two 

of whose parts are given parts of the 

general triangle to be solved, Obvi- 

ously, the altitude from either of the 

two unknown angles will accomplish 

this, ‘The plan of attack (ef, Figure 

LOO) will then be: Fraurw 109 
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1. Find p, $1, and 9; in the right triangle in which A and ¢ are given 
parts of the general triangle to be solved, 

2. Find $2 from given b and computed dy, 
3. Knowing p and dz in the second right triangle, solve this right 

triangle for C, a, and 6,. 
4. Find angle FB from computed 6, and 62. 
In drawing the altitude to form two right triangles three possibilities 
come to mind: those of Figures 110, 111, and 112, 

G) 8 Be x 

PL ®¢ ® O-~, 
Fiocrs 110 Vioune 111 Vieune 112 

The possibility in Figure 112 will never be assumed because it can always 
be avoided. This i« the case in which the altitude meets the given side 
“extended backward” and is suggested when the given angle ia obtuse, 
But by extending the arc of the perpendicular from L in the other direc- 
tion from B, Figure 110 or 111 will be obtained, aa is shown in Figures 
113 b, 4, respectively. Since the intersections of the two perpendiculars 
from B to b are exactly 190° of are apart, replacing one perpendicular 
by the other will not give right triangles containing sides greater than 

(a) 

(b) 

Viovnn 112 
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Of the two remaining possibilities (those of Figures 110 and 111) we 

shall always assume the simpler — that of Figure 110; that is, that the 

altitude falls inside the triangle. When this is not actually the case for 

a given triangle to be solved, the computed are ¢; will be found to be 

larger than 6, As soon as this happens a second sketch resembling 

Figure 111 should be drawn which will then make clear the procedure 

for finding @s from b and @;, and B from 6; and 63. Always draw the 

sketch assuming the altitude inside the triangle to the left of the center of 

the page, and leave blank sufficient space to the right for the corrected sketch, 

in case tis becomes necessary. 

Exampiy 7 (S.A.8.): Solve the spherical triangle in which one angle ts 
113° 48’ 12” and the two adjacent sides are, respectively, 79° 13’ 41” and 103° 
07" 23”, » 

Fraurs 114 

Referring to Figure 114, in which the given angle is labeled A, we have 

sinp = sin 4 sine 

tang: = cosdtanc cos A= tan ¢; cot c 

cot @; = tan A ecose cos ¢ = cot 6, cotd 

oy x BH by dé: =¢i-—b 

cosa == cos p Cos dy 

cot @y = sin p cot dy sinp = tan ¢2 cot Os 

cot C\) = cot psin @: sin d= tan p cot C ‘ 

Bf By K Py B= 0:— 6. 



A = 113° 48 12” 

c = 79° 12/ 41” 

p = 115° 50’ Wh” 

$i = 115° 14 13” 

6, = 112° 57’ 38” 

b = 103° 07’ 23” 
go. = 12° 06 55” 

0, = 13° 25/ 56” 
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Tein 9.96129 Leos (~)9AOD95 Ltan(~)10.45044 

lsin 9.99228 ltan 10.72068 loom 9.271% 

ein 9.95267 Len =)9AIY) Luh —)9 WANS 
ltan(—~)10.32663 

Len(~) 9HZT0 

leot 10.66226 Lem GSK Vin §=YA4LNOb 

leot 10.62193 

ee a a a a 
< 

Se oa 

\ 
~~ 

~~ 

a =115° 22’ 34” Ln = 9 HULL 

((=95" KY 25) LOA = 9 NWR 

C= BA° OW 25” 

B= 99° 31’ 43” 

Features to be noted: 

1. The aim of the construction of the altitude is to obtain a right triangle 
in which two parts ore known. Hence the altitude must not be drawn from 
the known angle. 

2. In the first figure, drawn to the left, the altitude was assumed to fall 
inside the triangle. Since, in this particular problem, this BOUIN TION Was 
later shown to be incorrect (as ¢; developed to be greater than b), the second 
figure was drawn in the place previously left blank to the right of the first, 

3. The formulas were developed from Napier’s Rules applied to the 
first figure, since the second figure was not found to be the true one until 
numerical values for some of the parts had been obtained. 

4. The logarithmic form, with minus signs where needed, was completed 
before any logarithms were looked up. 

5. Here computed parts have to be used to find other parts. This prac 
tice is to be used as infrequently as possible. 

6. The quadrant of p was determined by Napier’s Corollary 1. 
7. The originally selected formulas for ¢, L, and C were shown w be 

incorrect as soon 4s the second figure was seen to be the true one. These 
first formulas for ¢2 and B were then neatly crowed out and replaced, on 
the same respective lines, by the corresponding correct formulas — those 
based on the second figure. The origina) formula for C was revived by plac 
ing 4 prime in parentheses on C to indicate that this origina) formule gives 
not C but its supplement. Primes shall always indicate supplements. She 
prime was placed in parentheses to indicate that this origina) formula had 
been changed (by the addition of the prime on C) without rewriting, Ac- 
cordingly C was found as the supplement of C’. 

8. Napier’s Corollarics do not hold for non-right triangles. Angles ond 
sides opposite in general triangles are not necessarily in the same yusston, 

9. The lettering is suggestive: d; and §; are in the firet right triangle used; 
¢z and 6, in the second. The ¢’s are sides, and the 1s are angles. 

The procedure for the 4.3.4. case is entirely similar to that for the 
s.a.s. case. The unique assumption as to the type of sketch to draw, 

with proper reservations about correcting it if need be, hold exactly a 
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in the s.a.s. case. All that is needed is to encircle B and remove the 

circle from b in the above discussion. The differences will be that @2 

will be found from B and 4; (instead of B from 6; and 62), and 6 will be 

found from ¢ and ¢» (instead of ¢2 from b and ¢;). Furthermore, the 

second triangle will be solved given a leg and an angle, instead of two 

legs. 

26. Problems on Section 25 

1. Solve the following spherical triangles by means of the slide rule: 

(a) a'= 58°10’, B= 72°20’, c= 34°40’. 
(b) a = 115° 15’, B = 128° 45’, C = 73° 30’. 
(c) b= 87°, C=25°, a= 62° 
(d)B =41° 00’, C= 113°30’, a= 144° 15’. 
(e) a = 78°30’, b= 113° 20’, C = 118° 10’. 

2. Solve the following spherical triangles by means of logarithms: 

(a) a = 27°29’ 47", B= 63° 43’39", c= 47°55’ 11”. 
(b) a = 110° 34’ 50”, B = 61° 15’ 06", c= 112°25' 14". 

(c) a= 67° 58 88", B= 58°40 17", C= lit ss 
(d) b = 117° 56’ 36”, A = 126° 24’ 42”, C = 52° 18’ 50”. 
(e) c = 147° 27’ 30”, B = 98° 45’ 15”, a= 155° 12’ 22”. 
(f) a = 28°34’ 50”, B= 117° 30’ 42”, C = 128° 39’ 13”. 
(gz) b= 144° 31’ 57", A = 41° 1726”, C = 113° 00’ 08”. 
(h) b = 142°09’ 13”, c = 29° 46’ 08", A = 137° 24’ 21”, 

3. If two sides and the included angle of a spherical triangle are 23° 18’ 47”, 
114° 33’ 07”, and 67° 53’ 15”, respectively, find the third side. 

4, If a side and the flanking angles of a spherical triangle are 116° 17’ 25”, 
23° 34’ 19’, and 70° 28’ 36”, respectively, find the third angle. 

5. If two angles and the included side of a spherical triangle are respectively 
78° 13’ 44”, 109° 04’ 49”, and 127° 33’ 37”, find the smaller unknown side. 

6. If an angle and the flanking sides of a spherical triangle are respectively 
86° 19’ 35’, 107° 34’ 13”, and 28° 56’ 15”, find the larger unknown angle. 

7. Find the smaller unknown angle of the spherical triangle in which two 
sides and the included angle are respectively 162° 25’ 27”, 41° 04’ 19”, and 
It 1s 40" 

27. Group II: a.s.s. and s.a.a. 

The first fact to note in this group is that the triangle may be impos- 

sible because of Napier’s Corollary 3 (see section 12). Figure 115 is 

modeled after Figure 82. C and b are respectively the given angle and 

the given side adjacent to the given angle. Hence, the position of the 

vertex A relative to the great circle on which the side a must lie is fixed. 
Hence, the two extreme perpendicular distances from the vertex A to 
the side a are fixed, and, therefore, the magnitude of the given second 
side c certainly must at least lie between these limits for there to be any 
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triangle at all. Figure 115 further sug- 
gests that when a solution is possible there 

may be two solutions — one for the given 

second side c on each side of the shorter 

perpendicular, for instance. Since this 

shorter perpendicular is the least value 

that c could have, the length of c¢ when 

on either side of p must be greater than 

p. Hence, it is reasonable to suppose 

that c could have the same given value 

(somewhat greater than p) for two posi- Figure 115 

tions, one on one side and the other on the 

other side of p. In each case a distinct triangle would be determined, 
and, hence, the solutions would involve two different triangles. If c 

were given exactly equal to p, there will be but one solution, a right tri- 

angle.* Appendix I describes for the more curious student exactly how 

the various possible kinds of solutions (double, single, or impossible) 

‘can exist in this case. Reference to this, although not essential to nu- 

merical solutions of particular triangles of this type, will make the offer- 

ing of double solutions purely on the basis of numerical computation 

less of a blind, though numerically satisfactory, operation. As will be 

pointed out later in an example, for a particular numerical problem 

the number of solutions and their proper grouping will be ascertained 

automatically merely from the computations. 

Having explicitly noted that a given a.s.s. problem to be solved is 

ambiguous (i.e., a case leading to no, one, or two possible solutions), the 

student should draw a conventionalized figure arbitrarily indicating two 

possible solutions. This means, by the above paragraph and Napier’s 

Corollary 3 a, that the two assumed positions of the given side opposite 

the given angle should straddle the altitude constructed onto the un- 

known side (see Figure 116). With 

this figure as a guide the student can 

then mechanically perform the numeri- 

cal computations for the solution of the 

given triangle or triangles, admitting 

double answers for any part whenever 

possible; i.e., when the part in question 

is evaluated from the sine or cosecant 

function and when Napier’s Corollaries Fraure 116 

* There are, however, single solutions which are not right triangles. Some may be 

isosceles, but even this is not necessary. See Appendix I and example 8 b. 
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1 and 2 do not resolve the ambiguity. The figure will then show how the 

various sets of answers must be grouped. There will then be no, one, or 

two solutions according as the grouping of the numerical answers, dictated 

by the figure, gives no, one, or two legitimate triangles, namely, triangles 

(1) all of whose parts are positive and less than 180°, (2) three of whose 

parts are the given parts, and (3) whose parts conform to the order of 

magnitude theorem of section 22. The example below, which is fol- 

lowed by a recapitulation of the important features of the method, 

should make the above clear. 

EXxamp ies 8 a, 8 b (a.8.8.): Solve the spherical triangle in which an angle 
and an adjacent side are respectively 122° 18’ 32” and 18° 23’ 44”, and in 
which the side opposite the given angle is (a) 163° 07’ 13”; (b) 68° 20’ 23”. 

FriGure 117 

Referring to Figure 117, in which the first two given parts are labeled 
C and 0, respectively, we have 

* = sin 6 sin C, p obtuse, as C is. sin 

tang: = tandbcosC; cosC = tan ¢; cot b. 

cot 6: = cos btanC; cosb = cot 6; cot C. 

cos d2 = sec p’ cos c; cosc = cos p’ Cos do. 

cos 6. = tan p’ cotc 

sin B =sin p’esec; sinp’=sin B sinc, two values for B. 

a= dit do 

A = 60;+ 02 

b = 18°23’ 44” Tsin 9.49910 Ztan 9.52188 I cos 9.97722 

C = 122° 18’ 32” Tsin 9.92695 l cos (—) 9.72794 Itan (—) 10.19901 

p’ = 164° 31’ 52” Tsin 9.42605 Zsec (—)10.01602 1 tan (—) 9.44207 

1 = 169° 55’ 15” i tan (—) 9.24982 

6, = 146° 19° 06” 

¢ = 163° 07’ 13” Lose 10.53706 

U cot (—)10.17623 

1 cos(—)9.98088 1 cot(—)10.51793 

= 5° 50’ OO” dy 06° 50’ 00' Tcos 9.99690 

0, = 24° 13’ 00” lco 9.96000 3 i 

B = 66° 43’ 00” 
Tsin 9.96311 

BY = 118° 17’ 00” 
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By=113°17/00” ;A;=170°32/06 a;=176°45/15 } (1). b=18°23’44”"; C=122°18/32”; c=163°07/13” 
‘a 

B= 66°43/00” | A.=122°06/06/ ;a,=163°O5/15/’ (2). b=18°23'44""; C=122°18/32”; c=163°07/13” 

p = 164° 31’ 52” Isin 9.42605 1 sec(—)10.01602 1 tan(—)9.44207 

c = 68° 20’ 23” I csc 10.03180 1 cos 9.56715 leot 9.59895 

B= 16° 40 38” F 
ies a ae or" Tsin 9.45785 

gz = 112° 31’ 06” 1 cos(—)9.58317 

0, = 96° 18’ 36” 1 cos(—)9.04102 

b=18°23'44""; C'=122°18' 32”; c= 16390713"; Bix 163° 19” 22°"; Ar= 242° 37" 447; a4—= 282° 26/27” 

5 eg amend o= 16990719749 ~ 1 88"; A = BOY 20"; a = 57°24 09" 

Features to be noted: 
1, Explicit recognition of the ambiguity of this case is made in the par- 

ticular conventionalized figure drawn for it. The constructed altitude must 
be that onto the unknown side, in order that a right triangle may thereby be 
constructed having two known parts. The ambiguity of this case is then 
indicated by showing two positions of the given side, opposite the given angle, 
straddling the constructed altitude in conformity with Nupier’s Corollary 3 a. 

2. The value of the constructed altitude (p or p’) is always unique by 
Napier’s Corollary 1. It is p’ here as we shall let the larger of these two sup- 
plementary angles be the primed one. 

3. $1, G2, 91, 2 each have unique values, as they are computed from the 
tangent, cotangent, and cosine functions. Combining them in different ways, 
purely on the basis of the figure, gives two values for a and two corresponding 
values for A. 

4. B has two values, because it is computed from the sine function. 
Napier’s Corollary 1 will not apply to resolve this ambiguity, since, as 
the figure shows, only one of the angles B of the required triangle lies in a 
right triangle with a leg the constructed altitude p’. But this Corollary 
1 does show how to group the sets of double answers for B, a, and A: that 
one of the two values of B which is in the sume quadrant as p’ must be 
chosen for the solution triangle having its vertex on the other side of p’ from C. 
The figure will then suggest how to group the two values for a and A with 
the two values of B. Note, as previously stated, that the figure need be only 
schematic. Obtuse angles need not be pictured as such, as is shown by the 
above use of Napier’s Corollary 1 in selecting the proper one of the two 
possible values of B for B, from a consideration of the quadrants of C and 
the perpendicular.’ 

5. Recognition of the case of no solution would be immediate whenever 
log cos 2 is found to be positive and hence cos 2 greater than one. On the 

basis of the geometrical discussion of this ambiguous case in Appendix I, 

this can be predicted as soon as p or p’ is computed and cormpared with the 

given c. The altitude must exceed c for C obtuse and must be less than ¢ 

for C acute. 
6. The case of one solution in example 8 6 was recognized fromm the com- 

putations when one of the tentatively admitted solutions yielded a triangle 
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with parts greater than 180°. Single solutions are to be recognized also 

when a part of a proposed solution is equal to (as well as greater than) 180°, 

less than or equal to zero, or when log cos @2 is found to be zero (hence, 

cos 62 equal to one and 62 equal to zero). This latter is the case in which 

the single solution is a right triangle with the computed altitude equal to 

the given side c. 
7. Note that in 8 a the law of magnitude of parts of a triangle is not 

sufficient to determine the grouping of the values of the computed parts to 

form two triangles. If the above values of B were interchanged, this law 

would not be violated here. The reasoning of Feature 4, however, will al- 

ways determine the proper grouping. 

The s.a.a. case, like the a.s.s. case, is ambiguous. If the s.a.a. is 

‘‘nolarized”’ (i.e., if the polar triangle of a s.a.a. case is considered), the 

a.s.8. case is obtained, which we know from the above to be ambiguous. 

Certainly, if the polar of a triangle is ambiguous, the triangle itself must 

likewise be ambiguous. Of course, we could then solve the s.a.a. case by 

polarizing into the a.s.s. case, solving this by the method just previously 

outlined, and then polarizing back again. Such a procedure, although 

perhaps simplifying the geometrical theory of oblique-triangle solutions, 

increases the numerical computation because of two polarizing opera- 

tions. One of these is to be performed at the outset. If an error in 

subtraction is made here, all the ensuing logarithmic computation based 

on formulas derived from Napier’s Rules will be void. Furthermore, 

understanding the actual geometrical aspects of the s.a.a. case, as dis- 

tinct from the a.s.s. case, should be considered certainly as important as 

blindly working through a numerical solution with no regard as to just 

how the double solutions are possible. A complete discussion of the 

various figures possible in the s.a.a. case, with proofs and conditions 

under which they exist, is given in Appendix II for optional reference. 

Our present need, however, is a conventionalized sketch of double solu- 

tions in the s.a.a. case, which sketch can be used as a guide in computa- 

tion. This can be arrived at intuitively by examining the sketch for 

the a.s.s. case with a view to building analogous relations into the s.a.a. 
sketch. 

Figure 118 is the conventionalized sketch for the a.s.s. case. It was 

Ficure 118 Ficure 119 



27. GROUP II: A.S.S8. AND S.A.A. 85 

naturally suggested by the figure for this case in plane trigonometry. 
No such help is forthcoming in imagining the sketch for the s.a.a. case 
because this case in plane trigonometry is not ambiguous. The precise 
relation between the angles of a plane triangle (their sum = 180°) im- 
mediately determines the third angle of the triangle, thereby reducing 
the s.a.a. case in plane trigonometry to the a.s.a. case. But note that in 

Figure 118 the double solutions arise because the unknown part, B, op- 

posite a given part, b, is computed from the formula sin B = sin p csc a 

and hence, in general, can have two different values which are supple- 

mentary. The same situation obtains in the s.a.a. case. The obvious 

perpendicular to be drawn to give a right triangle with two known parts 

is that from the vertex of the unknown angle (C in Figure 119). Then 

the altitude p (or p’) is computed from the Napier’s Rules formula 

sin p = sin A sin b and p must be taken in the same quadrant as A by 

Napier’s Corollary 1. Then, in one of the right-hand right triangles, 
side a is computed from Napier’s Rules formula sin p = sin a sin B or 

sin & = sin p csc B, which shows that two solutions might arise because 

the unknown side a, on the basis of the computations, can have two 

distinct values which are supplementary. 

C C 

| 
t 

ay a1 p 

é 

Figure 120 FicureE 121 

A) 

The sketch for the s.a.a. case must be emphatically distinguished from 

that for the a.s.s. case in one vital respect. The perpendicular in the 

a.s.s. case must fall inside one of the double solution triangles and out- 

side the other, because of Napier’s Corollary 3a. The perpendicular in 

the s.a.a. case, by Napier’s Corollary 1, P 

must fall either inside both triangle so- 

lutions (Figure 120) or outside both tri- () 

angle solutions (Figure 121). The truth 

of this last statement lies in the fact that 

otherwise (see Figure 122) the angle B 

would not have the same given value in ® 

the two solution triangles. (B,) 

The two values for the angle at the ver- FIGurRE 122 

a1 
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tex B, one for one solution triangle and the other for the other solution tri- 

angle, would then be in different quadrants, because, by Napier’s Corollary 

1, the angle at B in one solution triangle and the supplement of the angle 

at B in the other solution triangle would have to be in the same quadrant 

as the perpendicular. 

Which of the two possible sketches (Figures 120 or 121) is the correct one 

for a particular problem is easily determined at the outset. Conse- 

quently, the proper choice should explicitly be made: Jf the two given 

angles are in the same quadrant, then the perpendicular should be drawn 

inside both solution triangles (Figure 120): if the two given angles are in 

different quadrants, the perpendicular should be drawn outside both solu- 

tion triangles (Figure 121). This rule should not be memorized; it follows 

immediately from Napier’s Corollary 1, and, hence, should be reasoned 

out on each occasion. 

The perpendicular must be in the same quadrant as A. Hence, if B is 
in the same quadrant as A, the vertices A and B in both triangle solutions 
must straddle the perpendicular; if B is in the quadrant different from that 
of A, the vertices A and B must be on the same side of the perpendicular 
in both triangle solutions. 

Failure properly to make this obvious choice of sketch will lead to nega- 

tive 02 and ge, from which the student might incorrectly infer that the 

particular problem was one for which there is no solution. If the ob- 

viously proper sketch is drawn at the outset, and if the computations 

are based on this sketch, then whether a particular problem has no, one, 

or two solutions will be determined automatically from these computa- 

tions by enforcing the rule that parts of a triangle must be positive and 

less than 180°. 

EXAMPLE 9 (s.A.A.): Solve the spherical triangle in which a side and opposite 
angle are respectively 140° 23’ 48” and 139° 19’ 18”, and in which a second 
angle 1s 52° 10’ 20’. 

Referring to Figure 123, in which the given parts are labeled 6, B, and 
A, respectively, we have: 

sin p = sind sin A; p in same quad. as A. 

tan ¢@i= tanbcos A; cos A= cotb tan d, 

cot 6:= cosb tan A; cosb = cot A cot A; 

sin ¢2 = tanp cot B’; 2 supplementary values. 

sin 62 = sec p cos B’; cos B’ = cos p sin 42 

2 supplementary values. 
sna =sin pescB’; sin p= sinasin B’ 

2 supplementary values. 

1 =o-—¢ : 
. = = = a letting d2 be the acute ¢ ©) 

Figure 123 
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Ci = A, = As ( . 

ay hae ’ letting 62 be the acute @ 

a1=a 

a= a letting a be the acute a. 

52° 10’ 20” Tsin 9.89755 I cos 9.78767 Itan 10.10989 

140° 23’ 48” Zsin 9.80446 J tan (—) 9.91770 1 cos (—) 9.88676 

=. 30° 13’ 59” Zsin 9.70201 / ltan 9.76550 J sec 10.06349 

= 153° 05’ 44” U tan (—) 9.70537 

= 134° 46’ 45” 2 cot (—) 9.99665 
= 139° 19’ 18” 
= 40°40'42” — Teac 10.18588 1 cot 10.06576 cos 9.87988 
= 42° 41/26” : a ast Isin 9.83126 

= 61°22’ 18” 
= 118° 37 44” 
= 50°34’ ol 

Lsin 9.94337 

= 129° 25/ 23” lsin 9.88789 

= 110° 24’ 18” 

= 15° 47’ 14” 

= 73° 24’ 27” ° 

= 16°09’01” 

= 60° 34’ 40” 

= 129° 25’ 23” 

A = 52° 10’ 20”; b = 140° 23’ 48”; B= 139° 19’ 18”; | cy =110° 24’ 18”; C, =73° 24’ 27”;a,;= 50°34’ 40” 

A = 52° 10’ 20”; b = 140° 23’ 48”; B = 139° 1918”; | cp = 15° 47’ 14’’; C. =16° 09’ 01”; ay =129° 25/ 23” 

Features to be noted: 
1. The choice of sketch shown was deliberately made because the two 

given angles are in different quadrants. 
2. The computations explicitly refer to this sketch: 
a. B was replaced by B’ (primes always indicate a supplement), because 

p falls outside both solution triangles. 
b. $2 (first quadrant) was paired with 62 (first quadrant) by Napier’s 

Corollary 1. 2’ was paired with 6.’ for the same reason. 
c. a, (first quadrant) was grouped with 2 and 62, by Napier’s Corollary 2 

(p and ¢» are in the same; i.e., the first, quadrant). a2 = a,’ was grouped 
with ¢2/ and 6.’ by the same corollary (p and ¢»’ are in different quadrants). 

d. €1, C2, Ci, and C2 were computed as differences of the corresponding ¢’s 

and 6’s, respectively. Had the perpendicular p fallen inside both solution 

triangles (B in the same quadrant as A), the c’s and C’s would have been 

computed as swms of the ¢’s and 6’s, respectively. 

3. Since both sets of answers involve only positive angles less than 180°, 

there are two solutions. The case of a single solution can easily be imagined: 

Had B been much smaller, B’ might have been enough larger to make the 

mantissa of log sin $2 sufficiently smaller to make ¢»’ larger than ¢1. Then 

c¢. would have been negative, or this second solution would not have existed. 
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Consult Appendix II for a more exact discussion of the conditions for the 

various kinds of solutions in this case of s.a.a. 

28. Problems on Section 27 

1. Solve the following spherical triangles by means of the slide rule: 

(a) C = 53°, b = 72°, c = 64°. 
(b) A = 47°30’, b= 18°15’, a= 26°45’. 
(c) C = 115° 20’, b= 61°40’, c = 127° 15’. 
(d) C = 25°30’, b= 113° 45’, c= 38° 00’. 
(e) A = 48°15’, c= 53°15’, a= 136° 45’. 
(f{) B= 125° 15’, a= 145° 45’, A = 165° 45’. 

2. Solve the following spherical triangles by means of logarithms: 

(a) A = 103° 50’ 19”, b = 162° 37’ 49”, B = 99° 30’ 53”. 

(b) A = 58° 18’ 55”, b = 153° 42’ 08”, B = 136° 19’ 29”. 
(c) GC = 67° 1515”, b = 72° 47’ 34”, B= 113° 07’ 04”. 
(d) A = 86° 00’ 53”, b = 124° 00’ 34”, B = 39° 47’ 25”. 
(e) C = 158° 20’ 34”, b = 168° 55’ 18”, c= 171° 50’ 50”. 
(f) C = 86° 1215”, b = 176° 40’ 10”, c= 10° 43’ 34”. 
(g) A = 161° 10’ 52”, b = 167° 15’ 19”, B = 171° 38’ 38”. 
(h) C = 99° 09’ 35”, b = 69°18'47”, c= 110° 41’ 13”. 

3. If the angles at the ends of a base of a spherical triangle are 123° 13’ 45” 
and 49° 20’ 35”, respectively, and if the side opposite the smaller of these two 
base angles is 55° 08’ 43’, how small could the base be? 

4, Find the six parts of the spherical triangle whose area is common to the 
two spherical triangles two of whose angles are 116° 10’ 05’, and 129° 55’ 25”, 
respectively, and whose side opposite the larger of these two angles is 132° 00’ 40”. 

5. If two sides of a spherical triangle are to be 112° 20’ 40” and 133° 00’ 35”, 
respectively, and if the angle opposite the larger of these two sides is to be 
160° 50’ 15’’, what proportion of the larger possible area enclosed is the smaller 
possible area? (Cf. Introduction, 9 0.) 

29. Group III: s.s.s. and a.a.a. 

The method of solution for this group is essentially the same as for the 

preceding two groups, namely, that of drawing an altitude to form two 

right triangles whose solutions by Napier’s Rules combine to give the 

solution of the given triangle. However, in the cases of Group III the 

student should explicitly note one vital variation in this general pair- 
of-right-triangles solution: the altitude, because it cannot be explicitly 
evaluated at the outset, is to be eliminated from two similar Napier’s 
Rules formulas, one applying to each of the two right triangles.* This 

* The student might well ask why, in the interest of uniformity of solution of all types of 
general spherical triangles, this method of elimination of p was not used in Groups I and II. 
‘The answer is to be found in the greater amount of careful manipulation of Napier’s Rules 
formulas necessary when eliminating p. Furthermore, the actual value of p in the ambigu- 
ous case of a.s.s. tells immediately whether or not the triangle is possible, and, more gener- 
ally (as is shown in Appendix I), the actual value of p tells the exact nature of these ambigu- 
ous solutions, 
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is all the student need remember about this method, and this is suggested 
by the figure. 

Although the s.s.s. case is perhaps the more natural of the two cases, 
the a.a.a. case will be described first, because its solution is a trifle sim- 
pler. The position of any desired altitude (whether inside or outside the 
triangle) can be immediately determined by inspection in the a.a.a. 

(c) 

Ficure 124 

case but not in the s.s.s. By Napier’s First Corollary (cf. Figure 124), 

it at once follows that, in the a.a.a. case, if the altitude* be drawn from 

any vertex, it will lie within or without the triangle according as the an- 

gles at the other two vertices are in the same or different quadrants. 

No such prediction can be made mentally in the s.s.s. case. Conse- 

quently, the figure in the a.a.a. case should never need revision, whereas 

in the s.s.s. case revision will frequently be necessary but such revisions 

will not affect the computations preceding the discovery of the need for 

this revision. 

Should the student, in a given a.a.a. case, fail at the outset to notice 
the correct position of the constructed altitude, he could still, later on in the 
solution, revise his figure in this case also without nullifying his previous 
computations. Two changes in sign automatically cancel one another (cf. 
example 10). However, if the student is interested, not merely in the 
perfunctory results of routine computations, but also in their natural geo- 
metrical significance, he will not be satisfied to rely on this protection. He 
will instinctively notice the correct figure when it is immediately predictable 
and will then be rewarded with a satisfying correlation between the arith- 
metical computations and the simple and natural geometrical figure. 

As in the other cases, the procedures in the a.a.a. and in the s.8.8. 

cases are best described by studying particular exercises for which the 

typical features are either described in the solution or are listed follow- 

ing the computations. 

* The altitude from a given vertex of a triangle will, quite naturally, be taken as that one 

of the two perpendiculars from the given vertex to the opposite side which intersects this 

opposite side in a point whose distances from each of the vertices on this side are less than 

180°. That is, it is the perpendicular for which both ?; and ¢z are less than 180°, 
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EXAMPLe 10 (a.A.A.): Solve the spherical triangle whose angles are respec- 

tively 47° 08’ 27”, 71° 00’ 15”, and 108° 53’ 32”. 

Electing to construct the altitude from A = 47° 08’ 27” (see Figure 125), 

we notice, by Napier’s First Corollary, that 
it must fall outside the triangle and we 
accordingly draw it so. The procedure will 
be obvious as soon as 6;, and therefore 62, 
is evaluated. The typical procedure to 
this end is: to find 6;, by eliminating p from 
two analogous formulas for p, one for each 
of the two right triangles formed by the 
altitude, each formula involving p, a given 
angle, and a@: Following this procedure for 
the definitely determined figure above: Figure 125 

cos B = cos psin ai _ cos C _ sin Bo sin (6; — A) 

cosC’=cospsin@:) cosB sinf; sini 

sin (A — 6) _ sin A cos 6; — cos A sin 6; * 
cosC sec B= - : 

sin 6; sin 6; 

cos C sec B = sin A cot 6; — cos A 

cot 6; = ese A sec B cos C + cot A 

6. = 6,—A 

cosc = cot 6; cot B 

cos b = — cot O2.cot C; cosb = cot 62cot C’ 

cos ¢; = cos 6; ese B; cos 6,;= sin B cos ¢1 

cos ¢2 = cos 42 ese C; cos 62 = sin C’ cos de 

a= oi-— 2 

A=47°08/27" Icso 10.13488 ncot 0.92793 

B=71°00'15" Isec 10.48745 leot 9.53687 Lese 0.02432 

C=108°53’32” I cos (—) 9.51027 L cot (—) 9.53431 Lese 0.02405 

log (—) 0.13260 nat —1.35710 

@3=113°13'36” n cot —0.42917 lcot (—)9.63261 Tcos(—)9.59590 

6,=66°05'09”" 
Leot(—)9.64683 1 cos 9.60785 

c = 98°29'44”" Zcos(—)9.16948 a 

= oyene 

: setae: Zcos 9.18114 

$; =114°3902" Leos(—)9.62022 
= eQnrrom $y = 64°37'52 1 cos 9.63190 

a = 50°01’10" 

Features to be noted: 

1. Any one of the three altitudes can be drawn. The most tedious side 
to evaluate is that onto which the altitude is drawn. If this side should 

* Cf. Introduction, 18. 
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not be required, values for the ¢’s would be unnecessary. Consequently, if 
in a particular problem a certain side is not required, let the constructed 
altitude be that onto this side. 

2. Noticing the correct figure is a simple mental process based, not on 
memorizing any rule, but on an obvious application of the fundamental 
Napier’s First Corollary. If this observation were not correctly made, the 
computed value of 6, would still be correct, for the first two lines of the 
formulas would then become: 

cos B = cos p sin a cosC’_ sin #2 _ sin (A — 6) 
cosC =cospsin 62) cosB sinO; sin A; 

which leads to the above derived formula for cot 6;. The figure could then 
be revised when the computed value of 6; is shown to exceed the given value 
of A, just as in the following example in the s.s.s. case. However, it should 
be disturbing to have the negative ratio of cos C to cos B (since C and B 
are in different quadrants) set equal to the ratio of two sines which must 
therefore be positive for the assumed positive 4. 

3. The formula for cot 6; is derived anew for each problem. The deriva- 

tion is short, and it obviates memorizing a formula much too special to war- 
rant memorizing. The fundamental and straightforward method alone 
should be borne in mind: Using first one and then the other right triangle, 
write two similar formulas, each expressing the altitude (p or p’) in terms of a 
given angle of the triangle and a 6-angle formed by a side of the triangle 
and the constructed altitude. Then eliminate from these two similar form- 
ulas the function involving the perpendicular and solve for a function of 
just one of the 6-angles in terms of functions of the three given angles. 

EXAMPLE 11 (s.s.8.): Find the magnitude of the two largest angles of the spher- 
ical triangle in which the three sides are respectively 53° 18’ 37’’, 93° 07’ 19”, 
and 127° 00’ 43”, 

Ficure 126 

By the order of magnitude relation for spherical triangles (section 22), 

the required angles are those opposite the two largest sides. Since the 

smallest angle is not required, we shall draw the altitude from this vertex. 

Just as the side onto which the altitude was drawn in the a.a.a. case was the 

most tedious to compute, so, for similar reasons, the angle from which the 
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altitude is drawn in the s.s.s. case is the most difficult angle to compute. 

The procedure in this s.s.s. case is entirely analogous to that for the previ- 

ously illustrated a.a.a. case. In the present instance we must first find the 

¢’s and then the 6’s (the opposite order held in the a.a.a. case), because, 

since the sum of the ¢’s is a given part, we can immediately express one in 
terms of the other. However, for this particular example with the most con- 
venient altitude drawn, the 6’s need never be computed and, therefore, the 
obvious formulas for them in this example will not be exhibited. 

As usual, when the position of the constructed altitude is not definitely 
predictable at the outset, we assume that the altitude lies within the triangle. 

Referring to Figure 126, in which the given parts are labeled c, }, a, re- 
spectively, we have 

cos (¢ — ¢1) jr<e 
PE ea eS. 1 

cos @ = cos p cos gi) COSD cos do _ cos g; ” 
cos b = cos pcos 2) cosa cos di cos (¢1— ¢) ert 

1 
cos¢, ” 

Note that, if the above assumed figure is not the actual one —i.e., if ¢ is 
shown to be greater than the given c— then ¢2 is to be replaced by (¢:1 — ¢) 

instead of by (c— ¢:). But, since ¢» enters only in the cosine, which is 
unchanged by a change in sign in the angle, the value of ¢; computed from 
the assumed figure will be correct even when this assumed figure is shown 
not to be the actual one. 

cos c cos ¢; + sinc sin ¢;* 

cos $1 
cos b sec a = 

cos b sec a = cosc+ sinc tan ¢1 

tan ¢1= sec a cos b escc — cote 

5 do=gi-—c 
cos B = tan ¢; cota 

cos AA tah $6 cot Wy, cos A’ = tan ¢2 cot band A = 180° — A’ 

a = 127°00’ 43” Isec (—) 10.22042 1 cot (—) 9.87730 

b = 93°07'19" Jcos(—) 8.73608 l cot (—) 8.73673 

e¢ = 53°18'37" csc 10.09589 — ncot 0.74510 

log 9.05239 nat 0.11282 : 

gy = 147° 41’ 44” n tan — 0.63228 Jtan (—) 9.80092 

2 = 94° 23/07" 1 tan (—) 11.11528 

B= 61°31' 54" 7 cos 9.67822 

Al = 44° 39’ 53” Leos 9.85201 

A = 135° 20’ 07” 

Features to be noted: 
1. Only such unknowns as are required are computed, and the altitude 

constructed is that one for which the computation of the required parts 
will be simplest. 

* Cf. Introduction, 18. 
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2. The conventionally assumed figure (altitude within the triangle) is 
found to be incorrect when the computed value of ¢; is found to exceed the 
given value of c. The assumed figure is then neatly crossed out and replaced 
on the right by the actual figure. Furthermore, those formulas in the sub- 
sequent solution which are affected by this change are replaced by the actual 
formulas. Were the entire solution required, the following additions to the 
above list of formulas would have been made with their subsequent revisions: 

sin 6; = sin ¢: csc a; 6; in the same quad. as $1; sin ¢; = sin 0; sina 

sin 62 = sin ¢2 csc b; 62 in the same quad. as ¢2; sin ¢2 = sin 62 sin b 

25 C= 6, = Oo. 

30. Problems on Section 29 

1. Solve the following spherical triangles by means of the slide rule: 

(a) a = 52°, Deo eee GOs 
(b) A = 21°30’, B = 37° 20’, C = 138° 45’. 
(c) a = 49°15’, b = 67° 45’, c = 76°, 30’. 
(d) a= 13° 2, b = 22° 30’, ¢ = 27745". 

2. Solve the following spherical triangles by means of logarithms: 

(a) @=577-10' 49" St hlnes 0S+s C= 126-40 4564 

(b) A = 163° 36’ 19”, B = 168° 17’ 27”, C = 171° 01’ 41”. 
Koy At — 32, OO AN B == 98° 52645 eC 107° 21Gb, 

(d) a = 87° 08’ 35”, b= 103° 41’ 49”, c= 151° 09’ 51”. 
fo) a a a AZ = 110° 00 52”, 6. = 1237.53’ 09”. 

Cento 1) 25 ees — Gals ofc = 10° OULOL. 

3. Find the smallest angle of the spherical triangle in which the three sides 
are 57° 30’, 119° 20’, and 141° 15’, respectively. 

4. Find the largest side of the spherical triangle in which the three angles 
are 17° 25’ 15’’, 38° 40’ 21’’, 144° 00’ 05”, respectively. 

5. Find the altitudes from the smallest angle of the triangle in which 
A = 42° 59’ 07", B = 67° 33’ 25”, C =.122° 14’ 35”. 

6. Find the altitudes onto the longest side of the spherical triangle in which 
a = 54° 20’ 55”, b = 107° 39’ 47”, c = 133° 28’ 19”. 

31. Problems on Chapter 3 

1. Solve the following spherical triangles by means of the slide rule: 

(yn Ce 160 la) Ss WIA, C= 100K. 
(b) a = 113° 20’, B = 56°30’, c= 142° 30’. 
(c) a = 47°20’, b= 66°20’, c= 73° 00’. 
(130%, ps OS C= bbe. 
(e) A = 39°30’, B= 64°30’, C = 148° 00’. 
(f) a = 52°20’, B= 138° 30’, C = 76° 00’. 
(g) A = 55°00’, B= 138° 30’, C = 55° 00’. 
(h) A = 64°30’, b= 141°30’, C = 148° 30’. 

(i) a= 115° 30’, b = 115° 30’, c= 115° 30’. 

(j) A = 59° 45’, b = 106° 20’, B = 122° 1h: 
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(a) a = 23° 14’ 39”, 
(b) C = 98° 15’ 40”, 
(c) A = 163° 22’ 35”, 
(d) a = 47° 15' 44”, 
(e) } = 112° 31" 51”, 
(f) a= 130° 50710", 
(g) a = 172° 18’ 44’, 
(h) C = 107° 49’ 23”, 
(i) A = 73° 18! 25”, 
(j) A = 140° 40’ 50”, 
(k) A = 86° 10’ 20”, 
(1) a= 77° 05 45”, 
(m) C = 47° 15’ 51”, 
(n) A = 49° 43’ 19”, 
(0) A = 107° 00’ 58”, 
(p) a = 09° 32’ 50”, 
(q) a = 114° 38’ 46”, 
(r) A = 61° 10’ 24”, 
(s) A = 58° 19’ 34”, 
(t) A = 125° 25/ 25”, 
(u) A = 54° 54’ 42”, 

b = 78° 00" 47”, 
b = 81° 45’ 41”, 
b= 14°36’ 51”, 
BS we 47 4" 
C = 130° 27’ 50”, 
B = 152° 20’ 54”, 
b = 90° 00/ 00”, 
b = 74° MY 23”, 
b = 11° 30 45”, 
iS 25! 15%, 
Bali oe 
Bae te ee 
b= 19° el 21, 
b = 49° 97 477. 
b = 24° 04’ 50”, 
b = 09° 32’ 50”, 
b = 114° 38’ 46”, 
B = 61° 10’ 24”, 
b = 117° 22'20", 
b = 145° 45’ 34”, 
c = 69° 25’ 11”, 
c = 55° 09’ 32”, 

PROBLEMS ON CHAPTER 3 

2. Solve the following spherical triangles by means of logarithms: 

c = 82° 56’ 04”. 
e= 110" 06 07% 
a = 169° 08’ 31”. 
c = 126° 00’ 35”. 
a@ = 155° 18’ 42”. 
C = 114° 33’ 27”. 
C = 110° 48’ 00”. 
¢ = 93° 00’ 47”. 
B = 171° 00’ 35”. 
B = 56° 34’ 45”. 
C = 141° 18’ 19”. 
C = 64° 38’ 54”. 
c= 18° 25/ 41”. 
B = 39° 25’ 25”. 
B= 18°14" 19" 
c = 09° 32’ 50”. 
c = 114° 38’ 46”. 
C = 61° 10’ 24”. 
B = 117° 22’ 20”. 
B = 165° 24’ 47”. 
a = 50° 00’ 00”. 
A = 73° 27’ 11”. (v) b = 22° 15’ 07”, 

3. If an angle and the adjacent sides of a spherical triangle are, respectively, 
115° 30’ 27’, 41° 21’ 39’’, 145° 45’ 38”, find the shorter altitude of the triangle 
from the known vertex. 

4, Find the largest angle of the spherical triangle in which a = 107° 18’, 
b= 12325), .€ =0d. 00. 

5. Find the two shorter legs of the spherical triangle in which the three angles 
are 63° 20’ 40’’, 111° 35’ 25”, 34° 35’ 15”, respectively. 

6. Find the altitudes onto the shortest side of the spherical triangle whose 
sides are 33° 18’ 49”, 97° 34’ 15’, 111° 52’ 08”, respectively. 

7. If the base of a spherical triangle is 147° 18’ 41” and if the base angles are 
82° 31’ 14” and 53° 46’ 07”, respectively, find the shorter altitude onto the 
given side. 

8. Find the third angle of a spherical triangle in which the other two angles 
are 47° 23’ 41”, 105° 48’ 55”, respectively, and the included side is 63° 18’ 46”. 



CHAPTER 4 

Terrestrial Applications 

32. Positions of Points on the Earth’s Surface 

The two most important spheres to which spherical trigonometry is to 
apply are the earth and the concentric spherical shell about the earth, 

called the heavens; in which we imagine the stars as fixed. The first of 

these spheres, the earth, will be treated in this chapter, and the second 
sphere, the heavens, in the next. 

The earth is not exactly a sphere but sufficiently so to be considered 

as such. According to Bowditch,* the earth’s longer or equatorial diam- 

eter measures about 7927 statute miles, and its shorter or polar diameter 

measures about 7900 statute miles. This means that by taking the 

radius of the earth = 3957 statute miles (approximately the mean ra- 

dius), we shall never be in error by more than 0.2 per cent. Spherical 

trigonometry on the earth is useful when the distances are sufficiently 

large to make the curvature of the earth significant. This is the case in 

shipping on the oceans and in flying. 

The familiar co-ordinate system of meridians and parallels of latitude 

on the earth’s surface serves to locate vertices of spherical triangles and 

measure their angles and sides. Figure 127 will help to recall this system. 

North pole, lat. 90°00’ 00” N. 

Greenwich meridian, long. 00°00’ 00" 

180° meridian Parallel of 40° North lat. 
International date line 

is near here 

Meridian of 30° East long. 

n” 
Equator, lat. 00° 00’ 00 

Meridian of 55° West long. 

Parallel of 70° South lat. \ 2 

1 a Cie) 
ae South pole, lat. 90 00°00 S. 

s 

Ficure 127 

* American Practical Navigator, originally by Nathaniel Bowditch. Washington, D.C.: 

United States Hydrographic Office. 
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The great circle called the equator, from which parallels of latitude are 

measured, is the great circle whose poles, called the North Pole and the 

South Pole, are the ends of the axis of the earth’s rotation. The great 

circle called the Greenwich Meridian, from which meridians of longitude 

are measured, is an arbitrary great circle through the poles. Its posi- 

tion, possessing no such geographical significance as the equator, has 

been adopted by international agreement as the meridian passing through 

Greenwich, England. The position of point A is described as lat. 70° 

South; long. 55° West. The co-ordinates lat. 40° N., long. 30° E. de- 
termine the point B. Any point on the earth’s surface (except the north 

and south poles) possesses a unique pair of directed angles which exactly 

describes the position of the point on the earth’s surface. The first an- 

gle, labeled “‘lat.”” and described as either north or south (N. or §.), 

must be between 0° and 90° and indicates the parallel of latitude on 

which the point lies or the directed number of degrees of arc, measured 

along the meridian of the point, separating the point from the equator. 

The second angle, labeled ‘‘long.’”’ and described as either east or west 

(E. or W.), must be between 0° and 180° and indicates the meridian of 

the point or the directed number of degrees between the Greenwich 

Meridian and the great circle through the poles and the given point. 

Conversely, any pair of angles, within the above described ranges, di- 

rected, and given in the order described above, will determine a unique 

point on the earth’s surface. The north and south pole are each de- 

scribed by but one angle: lat. 90° N., lat. 90° S., respectively. 

An essential feature of the co-ordinate system of Latitude and Longi- 

tude on the earth’s surface is that, whereas the meridians are all great 

circles, the parallels of latitude, with the exception of the equator, are 

not great circles. Consequently, ares of parallels of latitude (except 

the equator) cannot be used as sides of 

spherical triangles. This restriction is no 

hardship, as distances along parallels of 

latitude (except the equator), being dis- 

tances along small circles, will not be 

minimum distances. The whole point in 

using spherical triangles on the earth’s 

surface is to compute shortest distances be- 

tween points on the earth and to describe 

how to traverse them. If in a particular 

problem the length of are (AB in Figure 

128, for instance) of some parallel of lati- 
tude should be required, it can be found Figure 128 
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by the formula s (= AB) = r6, where r is the radius of the particu- 
lar small circle of the parallel of latitude and @ is the difference (in 
radians) of longitude of the two points A and B. The radius, r, of 
the smal! circle of A and B can be computed from the right triangle 
OAC when the latitude (angle AOD = angle CAO) of the small circle 
and the radius, R, of the earth are known. 

33. Spherical Triangles on the Earth’s Surface 

If any two points on the earth’s surface are given, the spherical tri- 
angle most useful in problems involving these points is the spherical 

triangle whose vertices are the two given points and one of the two ter- 
restrial poles. The meridian arcs between the pole and the given two 

(Lat. 43°S., 
long. 127°E):B Greenwich meridian 

Ps 

Figure 129 

points form two of the sides of the spherical triangle, the third side 

being the minor arc of the great circle determined by the given two 

points, as is shown in Figure 129. The lengths of the sides on the merid- 
ians will therefore be either 90° minus or 90° plus the latitude of the 

points as the figure directs. The angle of the triangle at the pole can 

easily be computed from the longitudes of the given points. Since the 

exact form of this computation depends upon the position of the Green- 

wich Meridian relative to the meridians of the given points, no set for- 

mula can be derived for all cases. In any case the computation is simple 

and should be based on the figure for each particular case. In Figure 

129 one of the more complicated cases is represented. A is at lat. 

27° N., long. 82° W., and B is at lat. 43° S., long. 127° E. Then 

angle APyB is (180° — 127°) + (180° — 82°) = 53° + 98° = 151°. 
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34. Distances on the Earth's Surface 

Since the radii of all great circles on the earth are assumed to be 
equal (and equal to 8957 miles), the linear measure of any great-circular 

are is known as soon as its angular measure is known. One minute of 

aro, for instance, on any great cirele will always have a definite linear 

measure, Since this measure is of convenient size (slightly more than 

the ordinary statute or land mile and about 6080 feet), it is used as the 

unit of linear distance in spherical triangles on the earth’s surface and 

is called the nautical mile. Accordingly, if the side AB of the triangle 

ABP y in Migure 129 were computed to be 132° 14’ 20”, its linear measure 

would be 

20 ~ : : 
(182 X 60) + 144 th 7920 + 14 + 4 = 79344 nautical miles. 6 B 3 

This measure is usually considered entirely adequate. If for any reason 

the distance in land miles is desired, it can be found by multiplying the 

number of nautical miles by the number of land miles in a nautical mile, 
namely, 

608038. 

5280 33 
Px 

Pg \ Cc 

: y 

ipsont a 
- : Ps 

Krave 180 a Freurn 13808 

35, Directions on the Earth's Surface 

Directions on the earth’s surface, as well as positions and distances, are 
important, Ta plane trigonometry (see Figure 130a) the directions of 
all points from. a given point, A, on a particular straight line through the 
point (and on the same side of the given point) are the same. The 
analogous situation does not obtain, in general, in spherical trigonome- 
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try. In Figure 1306 A; and A: are two points having the same latitude. 
B and C lie on the great circle determined by A; and A» such that B 
separates A; and Az, and A» separates Band C. Then B is obviously 
somewhat north of east from Ay, Ao is exactly east of A,, and C is 
somewhat south of east from A}. 

Because of the arbitrary convention of direction on the earth’s sur- 
face, the equator and the meridians are special great circles on the earth. 
A point moving in a constant sense around the equator is forever moving 
in a constant direction (either east or west). A point moving in a con- 
stant sense around a meridian moves over half of the circle in a constant 
compass direction (either north or south) and then abruptly changes 
direction by 180° which direction it then 

maintains for the next half of the circle. 
On all other great circles on the earth’s sur- 

face a point moving in a constant sense is 

constantly changing direction. For this 

reason to say that London is northeast of 

New York is not to say that in flying from 

New York to London on a great circle a \ 

plane will fly in a northeast direction. 
The plane will start in a northeasterly di- 
rection, be flying exactly east at some in- 

stant during the trip, and will enter London Pe 

in a southeasterly direction. (See Figure Bieurn 131 
. 131.) To say that London lies to the 
northeast of New York is merely to say: (1) that its latitude is more 
northerly than New York’s, and (2) that it is shorter to go from New 

York to London on a great circle by starting to the east (instead of to 

the west) of the meridian of New York. 

Actually it is too complicated to change direction perpetually on great- 

circle journeys. At sea it is customary to change as often as the com- 

puted amount of the proper change is large enough to be significant and 

to then maintain a constant course between changes. ‘This will generally 

mean a change in direction once in from one to three or four hours de- 

pending on the course and speed of the ship. Obviously, in the case of 

flying these changes of direction must be made more frequently. The 

great-circle path is thus approximated by a series of arcs of constant 

direction. ‘These arcs of constant direction are, in general, not even 

arcs of small circles. They are called rhumb lines or loxodromes. If 

a plane should fly continuously on a rhumb line of direction anything 

but exactly north, south, east, or west, the plane would forever spiral 
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Py 

Pain a 

Ps 

Figure 132 FIGuReE 133 

toward one of the poles, getting infinitely close to the pole but never 

quite reaching it. Figure 132 shows a rhumb line of direction slightly 

north of east from a point in the northern hemisphere. Figure 133 sug- 

gests how a ship sailing from New York to London approximates a 

great-circle course by a series of rhumb line arcs. If at one of the 

changes of direction, the direction set happened to be exactly east or 

exactly west, the subsequent arc sailed would be an arc of a small 

circle. By frequently altering direction and sailing on rhumb line arcs 

between changes of direction the actual great-circle distance between 

the two points is closely approximated. Furthermore, the direction set 

at each change of direction is certainly going to be very nearly, if not 

exactly, that of the great circle connecting the particular point of change 

of direction with the point of destination. For these two reasons great- 

circle distances and directions continue to be the basis of flying and sail- 

ing long distances. 

Having agreed from the above that the direction of a general great 
circle depends on the particular point considered on the great circle, we 

will examine the convention of describing this direction at particular 

points. Figure 134 shows the fundamental spherical triangle ABPy 

involved when two points on the earth’s surface are given. 
Derinition: If a plane or ship is traveling in a given direction at a given 

instant, this direction is said to be the course of the plane or ship, and the 
plane or ship is said to be on this course at the instant. 

Derinition: The initial course is the course on which a plane or ship 
leaves its starting point. 

Derinit10n: The course of arrival is the course on which a plane or 
ship reaches its destination, 
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If in Figure 134 angle Py AB is 103° and angle Py BA is 72°, we can de- 
scribe the direction of B from A at A as 13° south of west and the direc- 
tion of A from B at Bas 72° east of 

north. In order to do away with the 

necessity of referring these angles to 

various points of the compass, the 

following compass bearing conven- 

tion is devised. According to this 

convention, if a plane or ship is travel- 

ing from A to B, its Initial Course is 
said to be 257° (or 257° true). Im- 

agine an arrow drawn through A show- 

ing the direction of travel at A. Its 

head will be towards B from A. 

Then 257° is the angle at A between Bieuan 124 
the northern part of the meridian 
and the head of the arrow (representing the initial course at A) 

through A measured clockwise from north through east. If B is the destina- 

tion and if an arrow is drawn through B (with its head away from 4A), 

then the angle from the northern part of the meridian to the head of this 

arrow of the final course, measured clockwise through east will be 252°. 
Accordingly, the course of arrival is said to be 252° (or 252° true). If 

the plane or ship were flying from B to A the initial course and course of 

arrival would be 72° and 77°, respectively. The following table shows 
-compass courses for a plane or ship traveling from any point at a given 

instant in various directions: 
South- 10° West South 17° 

North East South West (west) of North East 
0° 90° 180° 270° 225° 350° 163° 

36. Problems on Sections 32-35 

1. Draw a large sphere and on it picture all the following points and indicate 
the given arcs and angles: 

(a) Panama (Lat. 08° 58’ N., long. 79° 32’ W.). 
(b) New York (Lat. 40° 40’ N., long. 73° 59’ W.). 
(c) Juneau, Alaska (Lat. 58° 20’ N., long. 134° 35’ W.). 
(d) Buenos Aires (Lat. 36° 30’ S., long. 60° 00’ W.). 

2. Estimate the approximate distance in nautical miles and land miles 

(using the approximation 1 nautical mile = 17 land miles) between Sante Fe, 

New Mexico (lat. 35° 40’ N., long. 106° 05’ W.) and Casper, Wyoming (lat. 

42° 51’ N., long. 106° 18’ W.). Sketch the figure. 

3. If a highway runs due west from Philadelphia (lat. 39° 53’ N., long. day 

10’ W.) to Columbus, Ohio, (lat. 39° 37’ N., long. 83° 00’ W.), approximately 

how long is it, neglecting hills and valleys? 
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4. In each case below an airplane is leaving the given point on the earth’s 

surface on the given great-circle course. Draw a sphere and on it indicate the 

ereat-circle path of the airplane, indicating on the figure all given ares and 

angles: 
(a) Denver (lat. 39° 45’ N., long. 105° 00’ W.) on course north 60° west. 

(b) Rio de Janeiro (lat. 23° 00’ S., long. 43° 20’ W.) on course 210° true. 

(c) London (lat. 51° 25’ N., long. 00° 20’ E.) on course 120° true. 

5. If an Eskimo travels due east on the Arctic Circle (lat. 66° 33’ N.) for 

100 miles, by how much has he changed his longitude? If an airplane flies 

100 miles due east on the equator, by how much has the plane’s longitude been 

changed? 

6. If a ship left the coast of Ecuador on the equator (long. 80° W.) and sailed 
due west, it would not meet any land of considerable size until it reached Halma- 
hera Island (one of the Moluccas or Spice Islands in the East Indies) in longi- 
tude 128° E. How long a voyage would the ship have sailed? 

7. If an airplane is to be flown on a great-circle course from Leningrad (lat. 
59° 55’ N., long. 30° 20’ E.) to Seward, Alaska (lat. 60° 07’ N., long. 149° 20’ W.), 
approximately on what course should the plane leave Leningrad? What ap- 
proximately would be the plane’s course of arrival? If the plane can average 
200 land miles per hour, how long will this flight take? If the plane consumes 
on the average 50 gallons of gasoline an hour, how many gallons of gasoline 
are saved by the plane’s taking the great-circle course instead of flying con- 
tinually due west? 

37. Solution of Terrestrial Problems 

The procedure to be followed in solving a terrestrial problem is as 
follows: 

1. Draw a sketch of the earth showing the poles, equator, the Green- 
wich Meridian (conveniently placed for showing the particular given 

points), and the given points themselves. Show the meridians of the 
given points. 

2. Draw the minor great-circular ares between pairs of given points 

to complete spherical triangles whose vertices are one of the poles and a 

pair of given points. On each such triangle indicate parts whose meas- 

ures can be easily calculated from the given positions of the points and 

the given directions by writing these measures on the proper parts and 
encircling them. 

3. For each triangle needed in the solution make another sketch of 
this triangle by itself and removed from the earth’s surface. Letter the 
triangle and show the known parts encircled. 

4. By the methods discussed in the previous chapters solve only as 
much of the triangle (or triangles) as is required. Always reduce the 
problem to the solution of the simplest possible type of triangles, namely 
right, isosceles, quadrantal, or general oblique in this order. 
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5. Make sure that the answers are in the required form. 
The following definition involves a useful concept of great-circle paths 

of the earth’s surface: 

DeFINITION: A vertex of a great-circle path on the earth’s surface is a 
point on the path nearest one of the geographical poles. 

Thus any great-circle path, not on the 

equator or a meridian, has two verti- 

ces: the north vertex, Vy, and the south 

vertex, Vs. (See Figure 135.) The ver- 

tices need not, of course, lie in between 

the two given points determining the 

particular great-circle path under con- 

sideration. 

THEOREM: The meridian of a vertex of a 

great-circular path is perpendicular to the 

path. 

The proof is accomplished merely by 

quoting Napier’s Corollary 3. Figure 135 

EXAMPLE 12: New York and Naples have practically the same latitude. 
Assume they have exactly the same latitude (that of New York) and com- 
pute the approximate distance saved in flying from New York to Naples on 
a great-circle path instead of continually due east. (New York: lat. 40° 
40’ N., long. 73° 50’ W.; Naples: lat. 40° 51’ N., long. 14° 26’ E.) 

FicurE 136 

From Figure 136 the small-circle distance is given by: 

2. BAY : 33 * : 

is a r = 3957 cos 40° 40’ land miles = 38. 3957 cos 40° 40’ naut. mi. 

87° 76’ = 3440 cos 40° 40’ naut. mi. : 

9 | 88° 16’ = 88.27 e827 a eee 
3 = 7 6 = (3440 cos 40° 40’) —— . = 4020 nautical miles. 

ge 08, rikht 180 (slide rule) 
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From Figure 137 the great-circle distance is given by: 

sin : = sin 49° 20’ sin 44° 08’ 

a 
sin 37 0.528 

d 
= = 31°50’ «. d= 63° 40’ 

d = 3820 nautical miles. 
(slide rule) 

ar N.Y. . saving = 4020 — 3820 = | 200 nautical miles. Ficure 137 

ExaMPLe 13: If a ship is to sail from Honolulu (lat. 21° 15’ 08” N., 
long. 157° 48’ 44’”” W.) to Sydney, Australia, (lat. 33° 51’ 41” S., long. 
151° 12’ 23’ FE.) on a great-circle course, what must be its initial course 
and how many nautical miles must she sail? (See Figure 138.) 

bo 

Figure 138 

151 — 12 — 28 89 — 59 — 60 
157 — 48 — 44 21— 15-08 

309 — 01 — 07 68 — 44-—52=c 
359 — 59 — 60 

50 — 58 — 58 = B 90 — 00 — 00 
33 — 51 — 41 

to 123 -—51—41l=a 
sin p_= sin Bsin c (pin J) 

tan ¢: = cos B tanc cos B = tan ¢; cot¢ 
cot 6; = tan B cose cosc = cot 6; cot B 

d2o=a-— Gi 

cot 02 = sin p cot de sin p = tan ¢2 cot 2 

cos b = cos pcos de 

A =6,+ 4 

Initial Course = 359° 59’ 60” — A 

Distance = bin minutes 

The actual numerical evaluations are left to the student. 

Answers: | Course = 222° 18’ 32” 
Distance = 4405.5 n. mi. 
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EXAMPLE 14: If a ship sails on a great-circle course from San Diego (lat. 
32° 43’ N., long. 117° 10’ W.) to Cavite in the Philippine Islands, its course 
is 300° 40’. The position of Wake Island is lat. 19° 11’ N ., long. 166° 31’ E. 

Re How far from Wake Island will the ship be when in this island’s longi- 
tude? 

b. How close will the ship come to this island and when (with respect to 
the instant the ship reaches the longitude of Wake Island) will it be at 
this point nearest to Wake Island, if the ship makes 15 knots? 

c. How close does the ship come to the north pole, what is its course at 
this point, and when is the ship at this most northerly point? (See Figure 139.) 

(a) sin p = sind; sin A, pin same quadrant as A. 

cot 6;= cos}; tan A 

Pr 

Greenwich 
meridian 

FicureE 139 

179° 60’ 

cos by = cot 6; cot A Ua bey 
° / 

= cos 2.¢ cos 62 = tan p cot a cot a co 62 cot p 2 ? 166° 31’ 

cos B = sin 6, cos Ss 
’ 13° 29 

é€é = 90° = (19° 11 ) ed! 62° 50’ 

(b) sin 6, = sin B sin e 76° 19’ 

tan d2 = cos B tane cos B = tan d: cote 
(c) tan ¢;= tan 6; cos A cos A = tan ¢; cot bh; 

C = 76° 19’ 

b, = 57°17" sin 9.92498 Jcos 9.73278 Ztan 10.19219 

A = 59° 20’ Isin 9.93457 1 tan 10.22697 Zoos 9.70761 

p = 46°21'35” 1 sin 9.85955 1 cot 9.97938 1 cos 9.83893 

0, = 47° 39’ 04” leot 9.95975 

0, = 28° 39’ 56” 1 cos 9.94322 I sin 9.68097 

a = 50°04’ 44” 1 cot 9.92260 Ss 

B =70° 4002” _— 1 sin 9.97479 1 cos 9.51990 
1 tan 9.57820 

6 = 20° 44’ 16” 1 sin 9.54912 

by = 19°31/10"  Jsin 9.52391 7 

dy = 07° 08’ 42” Ztan 9.09810 

ltan 9.89980 $1 = 38° 26’ 54” 
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(a) e = 20°44’ 16” = 1200+ 444+ 35 = | 1244.4 nautical miles. | 

(b) be = 19° 31’ 10” = 1140 + 31 + $$ = | 1171; nautical miles. 

dz = 07° 08’ 42” = 420+ 8+ 42 = 42855 

“. “s re ait <3 28875 ar 28 + RE . 6” = 28) BE le 48° later. 

(c) p = 46° 21’ 35” = 2760 + 214+ $§ =| 278lzq nautical miles. 

di = 38° 26’ 54” = 2280 + 26 + 35 | Course = 270° | 
= 2306;25 

“ = 23969 — 153118" | 6° 9 47” 36° out of San Diego. | 

38. Problems on Chapter 4 

1. A plane is flying a great-circle course across the Atlantic Ocean from New 
York (lat. 40° 40’ N., long. 73° 58’ 30” W.). Sometime after leaving, the pilot, 
with sextant, observes his latitude to be 53° 17’ N. and estimates he has covered 
1325 nautical miles. What is the pilot’s longitude and what course should he 
be steering? 

2. A pilot planning a great-circle flight across the Atlantic Ocean from New 
York (lat. 40° 40’ N., long. 73° 58’ 30’ W.) wishes, because of weather condi- 
tions, to stay south of 55° 30’ north latitude. He estimates he should allow 3° 
for error in his initial course (i.e., leave New York on a course 3° south of his 

most northerly allowable course). If he carries fuel for a flight of 3850 nautical 
miles, where would he be forced down because of fuel shortage? 

3. Prove that for any great-circle course not on the equator nor through the 
poles, the vertices and points of intersection with the equator divide the entire 
great circle into four equal parts of length equal to one quadrant. 

4. Let Q be one of the points of intersection with the equator of any great 
circle (not the equator). Let A and B be two points on this great circle such 
that the arcs AQ and QB of this great circle are equal. Prove that a ship sailing 
in a given sense on this great circle will have the same course angle at B as at A. 

5. The Law of Sines for spherical triangles states that 

sn A sinB sind 

sna sind sinc 

Prove this law by dropping perpendiculars from two vertices of the triangle 
and then equating two expressions for each altitude from Napier’s Rules. 
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6. Using the above Law of Sines, prove that for any ship or plane traveling 
on a great circle, not the equator nor a meridian, the course as it crosses the 
equator is either the most northerly or the most southerly course of all the 
courses on which the ship or plane can sail or fly on this particular great circle. 
(If the crossing of the equator is from the south to the north, the course at the 
crossing will be the most northerly; if the crossing is from the north to the 
south, the course at the crossing will be the most southerly of all possible courses 
on this particular great circle.) 

7. A cruiser and a destroyer both leave Brisbane, Australia (lat. 27° 27’ 32” S., 
long. 153° 01’ 48” E.) at the same time to sail on a great-circle course to Aca- 
pulco, Mexico (lat. 16° 49’ 10” N., long. 99° 55’ 50’ W.). The cruiser sails at 
18 knots and the destroyer at 29 knots. When the two ships again have the 
same course what will this course be? (Cf. problem 4.) 

8. A ship was known to have sailed from the Galapagos Islands, lying on the 
equator in longitude 90° 30’ W., on course 280° 30’ for the Pelew Islands. On 
Sunday, January 18, a wireless operator on Canton Island (lat. 02° 44’ N., long. 
171° 45’ W.) picked up a message, dated Monday, January 19, from the ship, 
in which message the ship’s latitude was given as 08° 18’ N. Less than half an 
hour later the Canton Island operator received a distress call from the ship, 
which then became silent. On what course should rescue craft have been sent 
out from Canton Island to the ship? 

9. If a plane leaves Oslo, Norway (lat. 60° N., long. 10° 42’ E.) on a great- 
circle flight, what is the plane’s latitude and longitude after flying 2700 nautical 
miles, if its initial course was due east? (Evaluate arc functions by slide rule 
or tables of natural functions.) 

10. In each of the following pairs of cities the latitudes of the two cities in 
each pair are approximately the same. Assuming both cities have the latitude 
of the first named city compute the distance saved in flying between the two 
on a great-circle path instead of a course constantly due east or due west. Com- 
pute the course of departure and arrival in flying from the first to the second 
city and also the highest latitude reached. Use either slide rule or logarithms. 

(a) Portland, Ore. (Lat. 45° 38’ N., long. 122° 45’ W.) 
Montreal, Canada (Lat. 45° 33’ N., long. 73° 35’ W.) 

(b) Calcutta, India (Lat. 22° 30’ N., long, 88° 30’ E.) 
Hong Kong, China (Lat. 22° 16’ N., long, 114° 12’ E.) 

(c) Moscow, Russia (Lat. 55° 45’ N., long. 37° 36’ E.) 
Edinburgh, Scotland (Lat. 55° 55’ N., long. 03° 10’ W.) 

(d) Bern, Switzerland (Lat. 46° 56’ N., long. 07° 23’ E.) 

Quebec, Canada (Lat. 46° 53’ N., long. 71° 20’ W.) 

11. If a plane flies —or a ship sails —from the first point to the second 

point of each of the following triples of points, will the plane or ship pass to the 

left or to the right of the third pone How close (in nautical miles) will the 

or ship come to the third point? 

ae Washington, D.C. (Lat. 38° 55’ N., long. 77° 00’ W.) 

Denver, Colo. (Lat. 39° 45’ N., long. 105° 00’ W.) 

Indianapolis, Ind. (Lat. 39° 45’ N., long. 86° 13’ W.) 

(b) Rome, It. (Lat. 41° 45’ N., long. 12° 15’ E.) 
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Jerusalem, Pal. (Lat. 31° 46’ N., long. 35° 14’ E.) 

Athens, Gre. (Lat. 37° 54’ N., long. 23° 52’ E.) 

(c) London, Gt. Brit. (Lat. 51° 25’ N., long. 00° 20’ E.) 

Moscow, Sov. Un. (Lat. 55° 45’ N., long. 37° 36’ E.) 

Hamburg, Ger. (Lat. 53° 33’ N., long. 10° 02’ E.) 

(d) London, Gt. Brit. (Lat. 51° 25’ N., long. 00° 20’ E.) 
Rome, It. (Lat. 41° 45’ N., long. 12° 15’ E.) 
Geneva, Switz. (Lat. 46° 13’ N., long. 06° 11’ E.) 

(e) Halifax, Can. (Lat. 44° 40’ N., long. 63° 45’ W.) 
Nassau, Ba. Is. (Lat. 25° 04’ N., long. 77° 22’ W.) 
Cape Hatteras, N.C. (Lat. 35° 15’ N., long. 75° 31’ W.) 

(f) Paris, Fr. (Lat. 48° 50’ N., long. 02° 20’ E.) 
Stalingrad, Sov. Un. (Lat. 48° 40’ N., long. 44° 30’ E.) 
Krakow, Pol. (Lat. 50° 05’ N., long. 19° 59’ E.) 

(9) Bordeaux, Fr. (Lat. 44° 40’ N., long. 00° 30’ W.) 
Sevastopol, Sov. Un. (Lat. 44° 45’ N., long. 33° 32’ E.) 
Venice, It. (Lat. 45° 26’ N., long. 12° 20’ E.) 

(kh) Budapest, Hung. (Lat. 47° 30’ N., long. 19° 05’ E.) 
Bordeaux, Fr. (Lat. 44° 40’ N., long. 00° 30’ W.) 
yeneva, Switz. (Lat. 46° 13’ N., long. 06° 11’ E.) 

12. Stations A and B on the earth’s surface are 1000 nautical miles apart. 
Airplanes One ‘and Two each leave station A on a great-circle flight whose path 
makes an angle of 37° 20’ with the great-circle path from A to B, plane Two 
leaving sometime after plane One and both flying at 200 nautical miles per hour. 
Sometime after both planes have left station A both planes are ordered by 
radio to change course immediately and fly on great-circle course to station B. 
If both airplanes arrive at station B three and one half hours after the order 
to change course was given, what was the total flying time for airplane Two 
in flying from A to B? 

13. During a fog a ship asks a radio direction-finder station at St. John’s, 
Newfoundland (Lat. 47° 32’ N., long. 52° 40’ W.) for a bearing. The station 
responds that the ship’s bearing at the station is 37° 25’. By dead reckoning 
the navigator of the ship feels fairly certain that his longitude is 50° 30’ W. 
What then is the ship’s latitude? (Note that radio waves follow great circles. 
Cf. Appendix III, section 37.) 

14. A ship in a fog off the Carolinas asks radio direction-finder stations 
at Cape Hatteras (Lat. 35° 15’ N., long. 75° 31’ W.) and at Cape Fear 
(Lat. 33° 51’ N., long. 77° 58’ W.) for radio bearings. These stations respond 
that the ship’s bearings at the stations are: at Cape Hatteras, 200° 25’; at Cape 
Fear, 76° 12’. Find the ship’s position by the solutions of spherical triangles. 
(Note that radio waves follow great circles. See Appendix III, section 37, for 
the method actually used in practice to determine position from two radio bear- 
ings. The method suggested here is theoretically sound but requires more time 
than can usually be spent on this problem at sea.) 



CHAPTER 5 

Celestial Applications 

39. The Program 

All terrestrial application problems presuppose as given the positions 

of the particular points on the earth’s surface mentioned in the problems. 
Such data in practice are obtained by means of celestial observations. 

Before systematizing celestial observations numerically, it is well to re- 

view their characteristics in general as experienced by casual observation. 

In this review the emphasis will be placed on the general nature and 

fortunate regularity of these complex celestial phenomena. The many 

bedeviling small corrections which must be applied to observations of 

some of these phenomena will be dealt with later on. Such corrections 

by a professional navigator are frequently matters of the lives or deaths 

of many people. But for the student being introduced to celestial ap- 

plications of spherical trigonometry, such corrections will warrant, in 

general, only footnote mention. Furthermore, the general and un- 

particularized concept of time will suffice for the present. In a later 

section it will be adequately systematized. 

Part One: Description and Explanation of Celestial Phenomena 

40. The Fixed Stars 

One of the most fortunate instances of order in the universe is the ap- 

parent fixity of all but a dozen * of the myriad heavenly bodies. On 

any cloudless night each star — that is, any heavenly body with the 

above noted dozen or so exceptions — is observed to move in a particu- 

lar circular arc about a point — as center — in the sky very close to a 

certain star called the “‘north star” or “Polaris,” while at the same time 

keeping its position relative to all the other stars unchanged. Such 

heavenly bodies — that is, all but the dozen or so exceptions — are 

therefore called the Fixed Stars. These are known to be at tremendous 

distances from the earth. 

* The sun, moon, planets, and comets. + See note on page 116. 
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Two descriptions of the phenomenon of the fixed stars are possible: 
In both cases the stars are conceived as permanently set in a gigantic 

sphere of transparent material, offering no resistance, with the earth 

as center. Then the observed motion of these stars can be described as 

due either to the rotation about a fixed axis of this sphere of stars while 

the earth stays motionless, or to the rotation of the earth about a fixed 

axis while the sphere of stars stays motionless. The second explanation, 
because of its consistency with many other observed phenomena, is the 

one adopted. Accordingly, The earth is said to rotate about a particular 

diameter (called its axis) which maintains a constant direction. What- 

ever other motion the earth may have, it so moves that the direction of 

its axis at any time is parallel to the direction of its axis at any other 

time. The north star in the fixed heavens is very nearly in line with 
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this constant direction of the earth’s axis and therefore very closely 
points the direction of the north terrestrial pole. 

Precisely because of the fixity of the fixed stars the ancients, observing 
that they formed set patterns in the sky, made a rough division of the 
heavens by distinguishing several groups of stars or “constellations.” 
Figures 140 to 142 picture the principal stars in some of these constella- 
tions. A familiarity with several of these constellations enables one to 
roughly designate any desired part of the heavens. 

41. The Sun and the Earth’s Orbit 

To a person on the earth the most spectacular star, which, like all 

the other stars, periodically reappears because of the rotation of the 

earth about its own axis, is that star which we call the sun. So com- 

plete is the dependence of the earth and all its inhabitants upon the 

sun, and so obvious is its influence on human activities, that, among 

other things, our generally used system of time is based on this star. 

In section 52 the subject of time will be treated in detail. It is 

enough here to recall that in ordinary usage the length of a day of twenty- 

four hours is the time interval between two noons, where a noon is the 

instant at which the sun is highest in the sky for that day.* Now if the 

sun be like all the other stars, we would expect that any other star 

could equally well define the length of a day, that is, as the time interval 

between two successive appearances of this star at its highest point in 

the sky. This is true, but, as can readily be observed, the length of 

such a day would be shorter: We shall call the length of a day as de- 

termined by the sun a solar day and, analogously, the length of a day as 

determined by any other star a sidereal day. That our clocks and 
watches indicate fractional parts of solar days is a natural inference 

from the observation that, day after day and year after year, the sun 

appears to be approximately at its highest point when our time pieces 

indicate twelve o’clock noon. Now it can easily be observed that a 

particular star will be highest in the sky a month from tonight about two 

hours earlier than for tonight, indicating that a sidereal day is about 

four minutes shorter than a solar day. Further qualitative evidence of 

this difference is obtained by observing the stars or constellations in 

which the sun rises or in which it sets from day to day, that is, by noting 

the stars last visible on the eastern horizon before sunrise and the stars 

first visible on the western horizon after sunset. Accordingly, the sun 

* That this is not strictly the case will be seen in section 52. But the variations from 

this approximation can at this point readily be observed to be periodic rather than con- 

tinuously accumulative. 
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appears to lag behind the stars by about the same four minutes a 

day. 

Since four minutes a day amounts to about one day a year, there is one 

more sidereal than solar day per year. In other words, the earth, while 

rotating once a day on its axis, behaves with respect to the sun in some 

special manner different from its behavior with respect to all the thou- 

sands of other stars, and, furthermore, the unit of time called the year 

must be the unit of time which has been adopted precisely because of 

and as an exact measure of this special behavior of the earth with respect 

to the sun but not with respect to all the other stars. In addition to 

rotating on its axis the earth revolves in an orbit about the sun but about 

no other star. This revolving exactly accounts for the difference (that is, 

one day a year) between the earth’s rotation as shown through the reap- 

pearance of the sun and as shown through the reappearance of all the 

other stars. 
+ * + 

A homely example, pictured in * 4% OS" es hii 
Figure 143, will be instructive here: eee evento es 
Consider a single pine tree in the cen- = paw icine 
ter of a large clearingin aforestof , *° rd ape ‘ ~ 
birch trees. Let a man walk around 2 \ tree * 
the pine tree, keeping very much ° — nee 
closer to this pine tree than to the “ai. clearing = 
nearest birch tree. If he walks 4 2 0 Oe pe Cie 
around so as to be always facing Ee APE aie jeri 
the pine tree (necessitating walking 
sideways for the whole circuit), he Figure 143 
will have faced exactly once, and 
turned his back on exactly once, every birch tree. Now let the man walk 
around the pine tree while always facing in some one direction, say west (neces- 
sitating walking alternately forward, sideways, and backward). He will then 
have faced the pine tree once and have had his back to it once, but he has 
not appreciably changed his aspect toward any one of the birch trees.* In each 
of these two cases there is a difference of exactly one between the number 
of complete changes of aspect of the man toward the pine tree on the one 
hand and toward all the birch trees on the other, and this difference has been 
due solely to the difference in behavior of the man with respect to the pine 
tree and with respect to all the birch trees, that is, he has made a circuit 
around the pine tree but not about the birches. 

Now, if the man spins around as he makes his circuit of the pine tree, 
the difference in the number of complete changes of aspect of the man toward 
the pine tree on the one hand and toward the birch trees on the other will 
always be exactly one regardless of the number of spins per circuit or the 
direction of spin with respect to the direction of the circuit. When the spin 

* We assume that the clearing is very large in comparison with the man’s circuit of 
the pine tree. 
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ws “with the circuit” (that is, in the same direction as the circuit — clockwise or 
counter-clockwise), in each complete circuit of the pine tree the man faces each 
birch tree exactly one more time than he does the pine tree; when the spin is 
“against the circuit” (that is, clockwise when the circuit is counter-clockwise or 
vice versa), in each complete circuit of the pine tree the man faces each birch 
tree exactly one fewer times than he does the pine tree. 

2 < 2 i = ig s ‘d 
Py 2 ey Be + * <a 
2 ® birch forest ©) * Si ee ~“\ = as yon =< * 

pine b - e - ~“S) pine GF e 
= 2. clearing { ° ) clearing * 

tree e e 
s ® e + Cee ao ® 

a 2 * 

2 2 

birch forest, =, » e ° . ». * birch forest 

(a) (b) 

Figure 144 

(a) Two spins per circuit with the circuit: 
One change in aspect with respect to the pine tree. 

Two changes in aspect with respect to the birches. 

(b) Two spins per circuit against the circuit: 
Three changes in aspect with respect to the pine tree. 
Two changes in aspect with respect to the birches. 

Figures 144 a and 6 picture these relations for some simple cases. The 
man is represented by a short segment with a dot at one end indicating 
his face. 

The application of the above example of pine and birch trees to solar 
and sidereal days is immediate and explains their difference: The sun replaces 
the pine tree, the earth the man, and the fixed stars the birch trees. Accord- 
ingly, we conclude, by way of explaining the difference between solar and 
sidereal days, that the earth, in addition to rotating on tts axis, revolves in an 
orbit about the sun but about no other star. Because the number of sidereal 
days per year has been observed to be one more than the number of solar 
days (and therefore 366 sidereal days = 365 solar days = 1 ordinary year), 
we conclude that the direction of the earth’s rotation on tts own axis ts with 
the direction of revolution in its orbit about the sun. The unfortunate fact 

that the number of sideral days (and, therefore, likewise the number of solar 

days) in a year is not integral (that is, the number of times that the earth 

rotates about its axis between successive reappearances of the earth in a 

given position in its orbit about the sun is not a whole number) necessitates 

leap years. The fact that leap years occur in general once in four years 

indicates that the proper fraction of a sidereal day over 366 must be about 

one-fourth. This in fact is the case.* 

In this review of the motions of the earth two more observations should 

be explained: the climate zones and the seasons. These phenomena are 

* 1 year = 365.2422 mean solar days = 366.2422 sidereal days. 
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related, and both are brought forcefully to the attention of even the cas- 

ual observer. The fact that many regions of the earth each year ex- 

perience a season of very warm weather followed by one of very cool 

weather obviously could never completely be explained by any eccentric 

position of the sun in the earth’s orbit, causing the earth to come much 

closer to the sun during the hot season than during the cold season,* 

since the hot seasons do not occur at the same times of the year for all 

those points on the earth which experience hot and cold seasons. The 

fact that pairs of points such that it is hottest for one when it is coldest 

for the other, and vice versa, lie on opposite sides of the equator is im- 

portant. The equator and the poles are significant in the phenomena of 

climate zones: The region around the equator is always very warm, ex- 

periencing little variation in temperature. In general, the farther the 

region is away from the equator, the lower is the annual mean tempera- 

ture and the greater the variation in the seasons. Consequently, we 

must conclude that the earth so moves in the course of a year as to change 

the aspect of its equatorial 

regions relative to the sun by Py 

very little, while at the same 

time changing the aspects of 

its polar regions relative to the 

sun very markedly and alter- 

nately for the two hemispheres. 

Now this changing of aspects 
A and B represent the same amount of heat and 

relative to the sun of the energy from the sun, as each band of rays is of the 
polar regions cannot be ac- same width. The arc of the earth’s surface over 
counted for b i : which rays A are spread is obviously smaller than 

unted for by any change IN the are over which rays B are spread. Since the 

direction of the earth’s AXIS, same amount of heat the case of rays A is spread 
over a smaller area than in the case of rays B, the 

for we have remarked (sec- regions of the A rays are warmer than Rnd of the 
tion 40) on the evidence of B rays. 
the fixity of this direction. 

This naturally suggests that we consider what this fixed direction is relative 

to the sun. If the fixed direction of the earth’s axis were perpendicular to 

the plane of the earth’s orbit, there would exist climate zones. The zone 

about the equator, receiving the sun’s rays more nearly normal to the 

earth’s surface than regions near the pole (see Figure 145), would re- 
ceive a larger amount of heat per unit area than the polar regions. 
The equatorial zone would therefore be torrid and the polar regions 
frigid. But, since no region on the earth would ever change its aspect 

B (Sun’s rays of given amount of energy) 

Figure 145 

* The opposite is true for northern latitudes, as the sun is at perihelion or nearest the 
earth in January (January 2 for 1943). 
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relative to the sun during the year (except for the daily night-and-day 
change), there could be no seasons for any region of the earth. But, 
if the axis of the earth were not perpendicular to the plane of its orbit, 
it could still be fixed in direction. Since this would immediately account 
for our seasons, as Figure 146 shows, we adopt this assumption. Meas- 
ured observations verify this assumption and set the angle at which the 
plane of the earth’s equator — perpendicular to the fixed direction of the 
earth’s axis — is inclined to the plane of the earth’s orbit at about 23° 
27". 

Derinition: The angle which the fired * plane of the earth’s equator 

makes with the fixed { plane of the earth’s orbit is called the obliquity of the 
ecliptic and is approximately 23° 27’. 

The poles in the heavens are considered at infinite distances from the 
earth. Consequently, the earth’s axis continues to point to these imaginary 
points in the heavens without having to tilt, even though this axis in the 
course of a year is displaced nearly 200 million miles. The star Polaris is so 
close to the north pole in the heavens and is so remote (67 light years) from 
the earth that the 200-million-mile displacement of the earth’s axis due to 
the earth’s orbital motion changes the angle which the line from the earth’s 
center to Polaris makes with the earth’s axis by about one-tenth of one 
second of are. 

We began our discussion of observations of the sun by noting one, and 

the less conspicuous, aspect of its apparent lack of fixity as a star: namely, 

its appearance each day at sunrise a little behind the group of stars in 

which it rose on the preceding day. We explained this lack of fixity, 

accounting for the four-minute discrepancy between solar and sidereal 

days, by the earth’s revolution about the sun. We now see that this 

revolution, plus the tilting of the axis of rotation about the sun, accounts 

immediately for the more conspicuous aspect of the sun’s lack of fixity: 

its being at progressively different heights above the horizon at noon for any 

given point of observation according to a periodic variation of one year’s 

cycle. In Figure 146 point A is some point on the tropic of Cancer,t 

and B is the point of intersection of the tropic of Capricorn § and the 

meridian of A. Then a person at A sees the sun at noon directly over- 

head on June 21 but more than 45° below the zenith on December 21. 

(Just the opposite, of course, is true for a person at B.) 

By way of summarizing our principal experiences of the universe 

* Very nearly fixed. The axis wobbles very slightly, because earthquakes and the 

meiting of huge masses of ice change the center of mass slightly. 

+ Very nearly fixed. The uneven attraction of the earth’s moon and the planets on the 

earth tilts this orbital plane very slightly. 

t That is, in latitude 23° 27’ N. 

§ That is, in latitude 23° 27’ S. 
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about us and the consequent explanations of the earth’s behavior in this 

universe, let us recall that: 

1. We explain night and day and the apparent rotation of the fixed stars 

about Polaris by the earth’s rotation about an axis of direction fixed in space 

‘and pointing very nearly in the exact direction of the star Polaris, which, 

with practically all the other heavenly bodies, forms a universe of stars fixed 

in space and at gigantic distances from the earth. 

2. We explain that aspect of lack of fixity of the sun which 1s manifested 

by the sun’s taking about four minutes longer to reappear each day than do 

the other stars by the revolution of the earth in an orbit about the sun in the 

same sense as the sense of its rotation about the axis — thus making slightly 

more than 366 sidereal days in a year of slightly more than 365 solar days. 

3. We explain that aspect of lack of fixity of the sun which ts manifested 

by the sun’s periodic (period equal to one year) change in daily maximum 

height in the heavens, for any particular observation point, by the assumption 

that the earth’s fixed axis of rotation tilts from the normal to the plane of the 

earth’s orbit, the plane of the ecliptic, by about 23° 27’. 

Ironically enough, despite all our efforts to explain (as summarized in 2 
and 3 above) the two aspects of marked lack of fixity of the sun, it is really 
just about as fixed as all the other stars for which we reserve the term “fixed 
stars.” The pine tree in the example of page 112 was just as fixed as the 
birches. The earth, not the sun, is the cause of this apparent lack of fixity 
of the sun. The earth happens to be very much closer to the sun than to 
any other star,* and, furthermore, the earth behaves toward the sun in a 

* The star next nearest to the earth after the sun is Proxima Centauri. Its distance 
from the earth is listed below, along with the distances from the earth of some other 
prominent stars. (Derrinition: A light year is the distance that light travels in one year. 
Since the speed of light is 186,000 miles per second, one light year is about 5.87 trillion miles) « 

Distance from Earth 
The Sun 0.000016 light years 
Proxima Centauri 4.17 light years 
Sirius 8.3 light years 
Vega | 50. light years 
Polaris 67. light years 
Arcturus 140. light years 
Andromeda Nebula 1,000,000. light years 
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unique way: it revolves about it but about no other star. But, since we are 
primarily interested only in celestial relations existing between the other 
heavenly bodies on the one hand and the earth on the other, we shall con- 
tinue to bar the term “fixed star’ from the sun. 

42. Problems on Sections 40-41 

1. Describe the changes in phenomena observable from the earth, if the 
earth’s axial rotation were kept at the same speed with the direction of the 
earth’s axis unchanged but with the sense of the axial rotation reversed. 

2. What conditions would obviate the necessity for leap years? Is every 
fourth year a leap year? Why? 

3. Assuming the sun were fixed in space,* compare the speed of a given point — 
not a pole — on the earth’s surface at different times of the day. What points 
on the earth’s surface move fastest and when? What points move slowest and 
when? What points on the earth’s surface have most nearly constant speeds? 

4. If the earth revolved in its orbit with no axial rotation, what could be said 
about the need for a system of leap years? 

5. Describe the changes on the earth’s surface which would result if the 
earth’s axis were fixed but fixed in the plane of the earth’s orbit. 

6. How can the tropical zone on the earth’s surface be defined in terms of 
the position of the sun in the sky at noon? Upon what does the width of the 
tropical zone depend? How narrow might the tropical zone be, granting rota- 
tion about a fixed axis and revolution in a plane orbit about the sun? 

7. If the phenomena of day and night, the motion of the fixed stars, and the 
succession of seasons on the earth were accounted for by a fixed earth with the 
fixed stars and the sun rotating about the earth, what would then be the nature 
of the motion of the sun? Show that such an assumption would set the sun 
apart from the other stars in reality instead of only in appearance. Point out 
the obvious difficulties in interpreting the phenomena of day and night on the 
other planets under such an earth-center theory. 

Parr Two: Co-ordinate Systems in the Heavens 

43. Introduction to Co-ordinate Systems in the Heavens 

The previous sections in this chapter have described the facts of the 

earth’s behavior with respect to the sun and the fixed stars. We are, 

therefore, free to introduce systems of co-ordinates for measuring those 

celestial observations which will provide data (such as the latitude and 

longitude of points on the earth’s surface) essential to the solution of 

triangles on the earth’s surface. For the actual measuring of such ob- 

servations, three things are necessary: some instrument, such as @ sex- 

tant, transit, etc.,t designed to measure angles between observed points; 

* The speed of the sun in its orbit about the center of the galaxy which projects on the 

celestial sphere as the “‘Milky Way” is about 200 miles per second. 

+ See Appendix III. 
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a timepiece; and a copy of the current edition of either the Nautical 

Almanac or the Air Almanac. These government publications tabu- 

late various space co-ordinates which the principal heavenly bodies will 

possess at certain times during the current.year. Such tabulations are 

computed on the basis of careful observations of these bodies over a 

period of many years. Brief descriptions of, and excerpts from, the 

Nautical Almanac and the Air Almanac are given in Appendix IV. 

In the text which follows mention will explicitly be made as to just what 

quantities are to be obtained from an almanac. Furthermore, practice 

in actually obtaining specifically required data from these almanacs will 

be provided in some of the problems. 

A simple example of how ter- reeset \ 
restrial data can be obtained from 
celestial observations should offer 
sufficient promise of the usefulness 
of the extensive systems of co-ordi- 
nates which follow. For an observer 
in the northern hemisphere the an- 
gular distance of Polaris above the 
observer’s northern horizon is his lati- 
tude north of the equator.* In Figure 
147, A is the point of observation 
on the earth’s surface. NAS, 
tangent to the earth at A, repre- 
sents the observer’s horizon, and 
QQ’Q” is the equator. Because the 
distance from the earth to Polaris 
is SO Immense in comparison with 
the earth’s radius, the line of sight 
of Polaris at any point (such as A) Figure 147 
on the earth’s surface can be con- 

sidered parallel to the earth’s axis. Therefore, the angles marked 4, 
having sides respectively perpendicular, are equal. But angle QOA is the 
latitude of A, and the other angle ¢ is the “altitude” of Polaris, or its angular 
height above the northern horizon. 

Before describing any system of celestial co-ordinates by which celes- 
tial observations are to be systematized it is essential to develop the 
domain to which these co-ordinates are to apply. This involves re- 
ducing the three dimensional space about the earth to the two dimen- 
sional concept of the “celestial sphere.” 

Past is, when the corrections for the very slight angle between the earth’s fixed axis 
and the line from the center to Polaris, and also the corrections for “parallax,”’ ‘“‘dip,”’ 
and “refraction” are made. Further mention of these corrections will be made below. 
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44, The Celestial Sphere 

To a person with an unobstructed view on a cloudless night the heay- 
ens appear as a huge hemispherical vault with himself as center. Across 
this vault the fixed stars appear (because of the earth’s axial rotation 
from west to east) to move in small circles from east to west with great 
regularity. Other celestial bodies are seen to move across this vault 
but with much more complex motions. The observer’s experience that 
the heavenly bodies on the vault above him appear and disappear sug- 

gests, instead of a celestial vault, a celestial sphere. The celestial sphere 

will accordingly be constructed as the domain for later co-ordinate 
systems. 

If the center of the celestial sphere were considered at the observer’s 

point of observation on the earth’s surface, then all systems of co- 

ordinates that are subsequently set up on this celestial sphere would 

necessarily be dependent upon this particular point of observation. 

Such a restriction would be unfortunate and is accordingly avoided by 

considering the earth’s center as the center of the celestial sphere. 

As will later develop, it is desirable to have some systems of celestial co- 
ordinates dependent on the point of observation, but it is also essential to 
have one system independent of this. It is by comparing observations re- 
ferred to a celestial co-ordinate system dependent upon the point of observa- 
tion to co-ordinates based on a system independent of the point of observa- 
tion that the position of the point of observation can be calculated. 

An immediate advantage of considering the celestial sphere’s center at 

the earth’s center is our ability to imagine the meridians and other refer- 

ence lines on the earth’s surface projected from the center onto this celes- 

tial vault. The only disadvantage is one of the small corrections pre- 

viously mentioned as essential to the navigator but not to the beginning 

student or layman. 
Derinition: The celestial sphere is an imaginary spherical shell 

which is concentric with the earth, whose radius 1s indefinitely large, and 

upon which are projected from the center all heavenly bodies as well as the 

earth’s poles and equator. 

Derinitions: The celestial poles are the projections of the terrestrial 

noles upon the celestial sphere. The celestial equator or the equinoctial 

is the projection of the terrestrial equator wpon the celestial sphere. 

The following enumerated properties of the celestial sphere are im- 

mediate consequences of its definition: 

1. The terrestrial observer, practically at the center of the celestial 

sphere, sees this sphere as the inside of a spherical shell. He sees about 
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half of it at any given instant, and, because of his rotation with the 

earth, he may, in the course of the day, see portions of the whole sphere 

varying from just half, if he is at a pole of the earth, to the whole celes- 

tial sphere, if he is on the earth’s equator. 

2. Instead of seeing the heavenly body at any instant ‘‘where it is in 

space,” he thinks of seeing it against the “backdrop”’ of the spherical 

concave behind the body. That is, he thinks of seeing not the body it- 

self but its projection on the celestial sphere. 

Accordingly, for each of the thousands of fixed stars the observer imagines 
a light bas been firmly imbedded in the inside surface of the celestial sphere 
at the point in which this celestial sphere — of indefinitely large radius — is 
pierced by the extension of the ray joining the center of the earth to the fixed 
star so represented. One of these fixed stars — a not very conspicuous nor 
intrinsically outstanding one —is called Polaris. But, because the earth’s 
axis of west-to-east rotation happens to be fixed in a direction almost in line 
with this star, a terrestrial observer to whom Polaris is visible seems to see 
this spherical concave, imbedded with fixed lights, rotating about Polaris 
once a day from east to west. However, the less egocentric and more useful 
notion of the fixity of the celestial sphere should be cultivated. The phe- 
nomenon of any other celestial body, such as a comet or a planet, whose 
position relative to these fixed stars changes, will be thought of as that 
bright spot on the celestial backdrop — celestial sphere — which is produced 
by a spotlight at the center of the earth as the spotlight is kept trained on 
the moving body imagined transparent. Hereafter, for the sake of brevity, 
a celestial body will sometimes be spoken of as “lying on the celestial sphere”’ 
when, in reality, it is this body’s projection which is on the celestial sphere. 

Figure 148 shows the celestial sphere with its center at the center of 
the earth. In order to make the earth of finite diameter distinguishable at 
the center of the celestial sphere of indefinitely large diameter, the scale 
has been ignored. A few constellations of fixed stars are shown on this 
fixed celestial sphere by means of fixed points to be thought of as obtained 
by projecting the actual fixed stars onto this sphere from the center. The 
“celestial equator” is shown on the celestial sphere as the imaginary great 
circle which is the projection of the earth’s equator. The curved arrow 
around the earth’s axis indicates the direction of the earth’s axial rotation 
which gives the illusion that this celestial sphere (with its fixed stars em- 
bedded in it) rotates about the same axis once in slightly less than twenty- 
four hours. 

_ 3. Since no value is ever assigned to the radius of the celestial sphere, 

linear distances on it have no significance. Distances on the celestial 
sphere are always considered in terms of angular measures of arcs. 

4. The observer actually sees the heavenly body at any instant on the 
backdrop of the celestial sphere at the point at which his line of sight to 
the body hits this backdrop. But for computation purposes the re- 
corded position of this observed body on the celestial sphere is the posi- 
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tion as viewed from the earth’s center (the center of the celestial sphere). 

The slight correction to be applied to the observed position to give the 

recorded position is called the correction for geocentric parallax, or, more 

commonly, parallax. When the 

observed body is on the horizon 

this parallax correction is a maxi- 

mum and is called horizontal 

parallax. Figure 149, in which 

the scale is ignored, illustrates 
the parallax correction. celestial 

sphere 

M is a celestial body in its ac- 
tual position. PM is the line of 
projection of M onto the celestial 
sphere from the point of observa- 

tion P on the earth’s surface. rn 

Hence, the projection (M,) of M Figure 149 
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on the celestial sphere is seen in this direction PM. But the recorded di- 
rection of the projection of M on the celestial sphere is the direction PM,, 
where, because of the infinite radius of the celestial sphere, PM, is parallel 

to OM, the line of projection from the center of the earth and celestial sphere. 
The angle a between these two directions — the observed and the recorded 
directions of M — is the correction for parallax and is obviously a maximum 
when PM is perpendicular to PO or when the observed body is “on the ho- 
rizon.” For fixed stars this correction is obviously infinitesimal. - For the 
sun, moon, and planets it is small, but large enough to require consideration. 
The Nautical Almanac tabulates these parallax corrections. The Air Alma- 
nac tabulates only the moon’s parallax. 

5. As the earth revolves in its orbit, it pulls the center of the celestial 

sphere around with it. This produces a periodic displacement in the 

center of the celestial sphere of maximum amount about 186 million 

miles (the diameter of the earth’s orbit). Since the radius of the celes- 

tial sphere is considered indefinitely large, this displacement in the center 

of the celestial sphere will not be considered to displace its surface. But 

the projections of the celestial bodies onto this celestial sphere may very 

well be materially altered. The degree of change in these projections, 

due to this annual change in the position of the center of the celestial 

sphere, varies with the type of celestial body whose projection is being 

considered: 

a. For fixed stars the effect is insignifi- 

cant. 

Ms Mi 

SoHeStay 

The distances from the earth’s center to 
the fixed stars are immense in comparison 
even with 186 million miles. Figure 150, in 
which the scale is ignored, illustrates the 
maximum shift in the projection of Arcturus 
on the celestial sphere for the center of 
projection at opposite ends of the earth’s 
orbit. This shift amounts to about 35 of 
one second of are. 

Arcturus= M 

140 light years 

=822 trillion miles 

Consequently, for any system of co-ordi- earths orbit 

nates which may later be set up on the Fiaure 150 

celestial sphere the co-ordinates of the 

fixed stars will not suffer any appreciable annual change due to the mo- 

tion of the center of the celestial sphere as the earth revolves in its orbit. 
b. For the sun, moon, and planets the effect is considerable and is ac- 

cordingly accounted for in the changing values of the celestial co-ordi- 
nates (to be discussed later) of these celestial bodies. In the case of the 
sun this effect is at the same time most significant and yet most difficult 
to experience correctly. Accordingly, this phenomenon — the effect 
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of the revolution of the center of the celestial sphere (as the earth re- 
volves in its orbit) upon the projection of the sun on the celestial sphere 
— will be the subject of the next section. 

45. The Ecliptic or the Path of the Sun’s Projection on the Celestial 
Sphere 

The projection of the sun on the celestial sphere is strikingly different 
from the projection of any of the other stars for the reason that the earth 
revolves about the sun but about none of the other stars. 

The earth, in its plane orbital motion, carries the center of the celes- 
tial sphere (the center of projection of all celestial bodies onto the celes- 

tial sphere) completely around the sun once every year. The result on 
the fixed sun’s projection should therefore be a circle on the celestial 
sphere. This is precisely the case. The observer’s actual experience of 

this circle, however, is unfortunately indirect. The earth’s daily axial 

rotation gives to the sun a totally misleading apparent motion across the 

whole visible sky between every sunrise and following sunset. If the 

brilliance of the sun did not blot out all the stars during the day, the 

observer’s experience of the circular path of the sun’s projection on the 

celestial sphere would be much more direct. Imagine, for instance, a 

total eclipse of the sun lasting for a whole day. Then both the sun and 

some of the stars would be visible at the same time. Because of the 

earth’s axial rotation the celestial sphere of the fixed stars would appear 

to have much the same east-to-west spurious rotation which the earth’s 
axial rotation gives to the sun. But the sun would appear to lag behind 
these fixed stars by about one half degree of are during each twelve hours 

of daylight, or by just that amount which accounts for the difference 

between a solar and a sidereal day. The net effect would be that of the 

sun slowly moving backward — that is, from west to east — with re- 

spect to the fixed stars. If the sun were totally eclipsed during the fol- 

lowing day also, the sun would reappear at sunrise at a point on the 

celestial sphere slightly behind the group of stars in which it was last 

seen at sunset on the previous day. During the second day the slow 

lagging of the sun’s projection on the celestial sphere would be observed 

to continue. The observer would then infer that in the course of a year 

the projection of the sun on the celestial sphere traces a complete circle 

on the celestial sphere. That this circuit is a circle must be evident from 

the assumption that the earth’s orbit lies ina plane. In fact, this path of 

the sun’s projection on the celestial sphere must be precisely the intersec- 

tion of the celestial sphere and the plane of the earth’s orbit, for all the 

lines of projection from the moving center of the celestial sphere — the 

center of the earth — to the fixed sun lie in the orbital plane. 
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Derinition: The ecliptic is the great-circular path of the projection of 

the sun onto the celestial sphere. It is therefore the intersection of this 

sphere and the plane of the earth’s orbit. 

The position of the ecliptic on the celestial sphere can be described roughly 
by the particular constellations of fixed stars through which the ecliptic 
passes. The more important of these ecliptic constellations are, in order, 
Aries, Taurus, Gemini, Leo, Virgo, Scorpio, and Sagittarius. The ecliptic 
is shown on the star chart in Appendix IV as a dotted sine curve; the reasons 
for this will be explained later. 

To say that at a given time “the sun is in Taurus” is to say that the 
sun’s projection on the celestial sphere is in this constellation at this time. 
It would then follow that this constellation would not be visible to any ter- 
restrial observer for a few weeks. The progress of the sun in the ecliptic can 
be followed throughout the year by careful observations of the celestial 
sphere just before sunrise and just after sunset. At these times enough stars 
are visible to determine in what constellation the sun is. 
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Since the terrestrial equator is inclined at an angle with the plane of 

the earth’s orbit, it follows that the celestial equator, or equinoctial, 

and the ecliptic on the celestial sphere intersect at precisely this angle, 

the obliquity of the ecliptic, approximately equal to 23° 27’. Figure 151 

pictures these two fundamental circles on the celestial sphere. 

Figure 151, by showing the earth in several positions in its orbit, purports 
to represent the celestial sphere for all times of the year. The corresponding 
shifts in the center of the celestial sphere, the earth’s center, are important 
only in so far as the projection of certain — and, necessarily, nearby — celes- 

tial bodies (the sun, for instance) are altered in direction. These yearly 

shifts in the center of the celestial sphere are immaterial as regards their 

magnitude. 

Four points on the ecliptic appear of particular importance, namely, 

the pair of points of intersection with the equinoctial — C and D — and 
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the pair of points halfway between the first pair— A and B. At C and 

D the sun is in the plane of the terrestrial equator, and hence the pro- 

jections of the sun onto the celestial sphere will give points on the equi- 

noctial, i.e., the points of intersection of the ecliptic with the eee 

C and D are therefore the points of projection of the sun at the “equi- 

noxes”’ or the times of the year when the day equals the night. The 

directions of the arrows representing the senses of the axial and orbital 

motions indicate that ¢ is the position of the earth at the vernal or spring 

equinox, about March 21, at which time the sun’s projection is at C. 

Accordingly, this point C is appropriately labeled by the 

Derrinition*: The fixed point on the celestial sphere which ts that point 

of intersection of the ecliptic and equinoctial (or celestial equator) at which 

the sun’s projection on the celestial sphere crosses the equinoctial from 

‘south to north is called the vernal equinox or the first point of Aries and 

is labeled Y. The vernal equinox is therefore that fixed — point on the 

celestial sphere into which the sun is projected from the earth’s center 

at that instant around the twenty-first of March at which the sun is 

directly above the earth’s equator. Points A, D, and B in Figure 151 

respectively represent the summer solstice, t for which the earth is shown 

at a and the date is about June 21; the autumnal equinox, for which the 

earth is at d and the date is about September 21; and the winter solstice, 

for which the earth is shown at 6 and the date is about December 21. 

The points in the earth’s orbit represented by e and f in Figure 151 are 
the vertices of the earth’s elliptical orbit. At these times the earth is either 
nearest to or farthest from the sun, which is located at one of the foci of the 

earth’s elliptical orbit.§ The earth is known to be closest to the sun (at 
perihelion) usually early in January and farthest from the sun (at aphelion) 
usually early in July. The orientation of the ellipse representing the earth’s 
orbit indicates that f represents perihelion and e aphelion. 

The term “fixed” as applied to T demands some slight qualifications, 
which are of interest to the professional astronomer. The uneven pull of 
the planets and the moon on the earth tend to tilt slightly the plane of the 
earth’s orbit and, therefore, the ecliptic. The uneven attraction of the 
sun and moon on the earth’s equatorial bulge produces the phenomenon of 
the gyroscopic precession of the earth’s axis (see the discussion of the gyro 
compass on page 222 in Appendix III). These factors produce a very slight 
motion of T on the fixed celestial sphere, amounting to about 50 seconds of 
are a year. 

* This definition logically defines the point c in the earth’s orbit in terms of point C 
on the celestial sphere. However, the point c is naturally more familiar than the point C. 

T See the qualification of the term “fixed” below. 

t Solstice literally means the time or point at which the sun “stands still.” The sun 
“‘stands still’’ at these points in the sense that the north-south component of motion of the 
projection on the celestial sphere becomes zero at these pone 

§ The earth’s orbit, being an ellipse of eccentricity about gg, is very nearly a circle. 
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Several hundred years ago this point on the celestial sphere was in the 
constellation Aries. For this reason the vernal equinox was called the 
“first point of Aries.” Because of its slight motion this point is now slightly 
removed from this constellation. For our present purposes T can be con- 
sidered an imaginary fixed point on the celestial sphere — imaginary in the 
sense that there is nothing to mark the point. 

46. Problems on Sections 43-45 

1. Discuss the reasons for the following conventions in the concept of the 
celestial sphere: 

a. Considering heavenly bodies not where they are in space but where 
they project to on a spherical surface. 

b. Considering the center of projection not at the observer but at the 
earth’s center. 

c. Considering the radius indefinitely large instead of some arbitrarily 
chosen distance, in which case the heavenly bodies at a distance from the 
earth greater than this arbitrarily chosen radius of the celestial sphere would 
be thought of as being projected toward the earth’s center instead of away 
from it. 

2. Under what condition will the geocentric parallax of the moon or of a 
planet be zero? When is this parallax a maximum? Is the maximum 
parallax of the moon greater or less than the maximum parallax of a planet? 
Why? 

3. Due to the obliquity of the plane of the ecliptic with respect to the plane 
of the equinoctial (i.e., the earth’s axis is not normal to the plane of the earth’s 
orbit), the earth experiences seasons which conveniently mark the passage of 
years. If the earth’s axis were normal to the plane of the earth’s orbit, what 
direct experience would a person on the earth have of the progress of a year? 

4. In what respects would a diagram of the celestial sphere for a Martian 
resemble, and in what respects would it differ from, a diagram of the celestial 
sphere for an earth inhabitant? (The earth is 93,000,000 miles from the sun. 
Mars is about 141,000,000 miles from the sun and has its fixed axis inclined at 
an angle of 23° 30’ with the normal to its orbit which is in a plane making an 
angle of about 2° with the plane of the earth’s orbit. The eccentricity of Mars’ 
orbit is 0.09 and a Martian year is nearly twice as long as an earth year.) 

5. If in problem 4 you replaced the word ‘‘Martian” by “an inhabitant of a 
‘planet’ in the Andromeda Nebula,” what would your answer be? See the 
note on page 116. 

6. What is the arc distance on the ecliptic between the two equinoxes and 

what is the are distance between each equinox and the solstices? What can be 

said of the corresponding time intervals? What calendar evidence is there 

that perihelion occurs between the autumnal equinox and the vernal equinox 

instead of vice versa? What calendar evidence is there that perihelion occurs 

between the winter solstice and the vernal equinox? (See page 144 (1).) 
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47, A Celestial Co-ordinate System Independent of the Observer: 

Declination and Right Ascension 

Having developed the concept of the celestial sphere, we can consider 

our principal use of this concept: to establish celestial co-ordinate sys- 

tems as a basis for numerically fixing the positions of the heavenly 

bodies. By means of these numerical descriptions and of certain celes- 

tial observations we can determine positions on the earth’s surface. 

The most fundamental system of celestial co-ordinates is one which is’ 

independent of the position of the terrestrial observer, that is, one in 

which the co-ordinates of the projection of each celestial body on the 

celestial sphere can be tabulated for use by an observer anywhere on the 

earth’s surface. 

The co-ordinate system on the earth — obviously independent of the 
observer — serves as a model for constructing such a system on the 
celestial sphere. A pair of diametrically opposite points, called “‘poles”’ 

of the system, are to be picked on the sphere. Great circles or ‘“‘merid- 

ians’’ through these poles can then be considered, after which points 

on the celestial sphere can be partially fixed by their angular distances — 

latitudes — measured along the meridians from the polar of the assumed 

poles. Deciding upon a base meridian, from which other meridians 

are to be measured, will complete the fixing of points on the sphere by 

means of the spherical angles — longitudes — at the poles between the 

base meridian and the meridians of the points in question. 

Convention. In the independent celestial co-ordinate system of right 
ascension and declination: 

1. The poles are the celestial poles defined in section 44 as the projection 
of the terrestrial poles. 

2. The base meridian is the great circle through the poles and the first 
point of Aries. 

For earth inhabitants the choice of celestial poles is obvious. Since these 
poles are the points towards which the earth’s axis of rotation continually 
points, they have exceptional significance among all other points on the 
celestial sphere. These poles are not absolutely fixed but are fixed enough to 
serve. 

The choice of base meridian, however, cannot be made analogously by 
taking the projection of the terrestrial base meridian. The projection of the 
Greenwich Meridian on the celestial sphere is obviously not fixed but makes 
a complete circuit each sidereal day. The celestial meridian to any bright 
fixed star near the celestial equator could well be taken as a base meridian. 
Such a choice would have the advantage of being easily pictured in the sky. 
The first point of Aries, however, even though it cannot be seen in the sky, 

* See the qualification of fixity in T in the previous section. 
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is one of two sufficiently fixed points which possess unusual significance to 
earth inhabitants. The three steps indicated below will assist in obtaining 
a rough idea of the position on the celestial sphere of this base meridian to Y. 

1. Look for Cassiopeia and pick out the bright star, Caph (8), at the 
brighter end of the flat “W” in this group of stars. (See Figure 142.) 

2. Imagine the meridian through Caph and note that it passes very close 
to another star, Alpheratz, of about the same magnitude (2.2 as against 2.4 
for Caph), lying as far below Caph as Caph is below Polaris. 

3. Then imagine T as on this meridian so that Polaris, Caph, Alpheratz, 
and T in this order are equally spaced from the pole to the equator. (See 
Figure 152.) 

Derinition: The spherical angle at the celestial poles between the base 
meridian to the first point of Aries and the celestial meridian of a celestial 

body is called the body’s right ascension — abbreviation R.A. — when 

this angle is measured eastward from the base meridian and the body’s 

sidereal hour angle — abbreviation S.H.A.— when this angle is meas- 
ured westward from the base meridian. 

Right ascension has long been the standard celestial longitude co- 
ordinate used at sea and at astronomical observatories. The sidereal 

hour angle, however, is preferred in air navigation. The sidereal hour 

angle has the advantage of being consistent in direction with two other 

longitude co-ordinates measured at the celestial poles, namely, Green- 

wich hour angle and local hour angle, which will be discussed later. 

The relation between right ascension and sidereal hour angle is obviously 

simple, being given by 

S.H.A. = 360° — R.A. = 24" -— R.A, 

Derrinition: The declination — abbreviation d — of a heavenly body 

is its angular distance from the equinoctial, or celestial equator, measured 

upon the celestial meridian of that body. It is designated as north or south 

according as the given body is north or south of the equinoctial. 

In Figure 152, M represents a “heavenly body on the celestial sphere ”’ 

—more accurately, ‘‘the projection of the body from the center onto 

this sphere.” Its right ascension is the smaller spherical angle T Py M or 

the arc YD and appears to be about 20°. The sidereal hour angle is the 

larger angle TPyM. The declination of M is the are DM and appears 

to be about 60° north. Thus the right ascension and declination, or 

sidereal hour angle and declination, on the celestial sphere correspond 

respectively to longitude and latitude on the terrestrial sphere. 

Since the projections on the celestial sphere of the “fixed stars” are 

fixed on this sphere, we should expect the right ascension and declina- 

tion of each fixed star to be constant for that particular star. 
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The Nautical Almanac, which tabulates these co-ordinates in detail 

for the more conspicuous stars, shows that this is very nearly the fact.* 

From the above discussion of the appearances of the sun on the celes- 

tial sphere it is obvious that the right ascension of the sun is certainly 

not constant. It is 0° around March 21, and 90°, 180°, 270° around 

June 21, September 21, and December 21, respectively. Furthermore, 

there is a change during the year of nearly 47° in the sun’s declination. 

It is about 23° 27’ north around June 21 and about 23° 27’ south around 

December 21. And yet, as previously mentioned, the sun is as fixed as 

all the other so-called fixed stars. This variable-co-ordinate illusion of 

lack of fixity of the sun is inherent in the celestial sphere itself, since 

this sphere was constructed by projections from the center of the earth, 

which moves around the sun but about no other star. 

48. Celestial Co-ordinate Systems Dependent on the Observer: Hour 
Angle, Altitude, and Azimuth 

If eelestial observations are ever to determine the position of any 
given point of observation on the earth’s surface, they must at some time 

be so described as to make them dependent on this point of observation. 

This can be accomplished by referring the observations to a co-ordinate 

system based on the observer’s position. Two such systems dependent 

on the point of observation will be described, the first partially and the 

second totally dependent on the position of the point of observation. 

A. The Celestial Co-ordinate System of Declination and Hour Angle 

The latitude co-ordinate in this system is the same as in the absolute 

system, namely, declination. The longitude co-ordinate is dependent 

upon the position of the point of observation. 

Derinition: The celestial meridian of an observer is the projection of 
his terrestrial meridian onto the celestial sphere. 

* The maximum yearly change in declination of the fixed stars is about 50”... The com- 
bination of precession and nutation of the earth’s axis, by slightly changing the position of 
the celestial poles on the fixed celestial sphere, slightly changes the position of the celestial 
equator, from which the declination is measured. 

Both the motion of the earth’s axis and tilting of the earth’s orbital plane — see the 
second footnote on page 115 — cause slight variations in the right ascensions of the fixed 
stars. The changes due to the motion of the earth’s axis exceed those due to the tilting of 
the earth’s orbital plane and are more variable for the different fixed stars. The variation 
in right ascension of a fixed star which is due to the motion of the earth’s axis depends upon 
the proximity of the star to a celestial pole. A slight change in the position of the celestial 
poles — due to the motion of the earth’s axis — can easily cause a marked change in the 
right ascension of a fixed star extremely close to one of the celestial poles. The variation 
in the right ascension of Polaris, which has a declination of almost 89° north, is about 40’ 
of are for the year 1943. See Appendix IV, where, in the Star Table, the S.H.A. of Polaris 
is qualified by being enclosed in parentheses. 
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The celestial meridian of an observer, therefore, rotates eastward on 
the celestial sphere, making one complete revolution every sidereal day. 

Derinition: The hour angle (abbreviation t), more specifically, local 
hour angle (abbreviation L.H.A.), of a celestial body for a particular point 
of observation is the spherical angle at the poles between the celestial meridian 
of the observer and the celestial meridian of the observed body. Hour angles 
are measured from the observer's meridian westward to the meridian of the 
observed body through either 360° or 24 sidereal hours. 

The celestial meridians are frequently referred to as “hour circles.” 
In Figure 153 an observer is represented at A as having his terrestrial 
meridian, and therefore his celestial meridian, appear in the plane of the 

paper at the instant that the star 1/7 is being observed. PyG'Pg repre- 

sents the meridian of Greenwich at the instant of observation, and 

PyM Pz represents the hour circle of the star M. Then the angle ¢ 

is the hour angle of M for the particular observer and the particular in- 

stant indicated. 
Figure 153 suggests a possible later 

use of this hour angle co-ordinate in 

determining the longitude of a point =| £Pr 

of observation A. Note that tg is the @ 

Greenwich hour angle of M at the in- OD 

stant of observation, and long. is the 

longitude of A. Hence, in this par- 

ticular case shown (that is, for east 

longitude) : 

long. + (tg — t) = 360° Figure 153 
long. = 360° — (t, — 2) 

The Greenwich hour angle of M at any Greenwich civil time of observa- 

tion, as given by a properly corrected chronometer reading, can be ob- 

tained from either the Nautical Almanac or the Air Almanac. For the 

latter reference see Appendix IV and note that combining the changing 

Greenwich hour angle of the vernal equinox, T, with the constant sidereal 

hour angle of a fixed star will give the Greenwich hour angle of the fixed 

star. Hence, all that is now needed to find the longitude is the hour 

angle, ¢, of M at A, the point of observation. This can never be ob- 

served but is calculated from the solution of a spherical triangle in- 

volving the co-ordinate “altitude” of M to be discussed below. 

B. The Celestial Co-ordinate System of Altitude and Azimuth 

The absolute celestial co-ordinates (those independent of the position 

of the point of observation) are tabulated in the Nautical Almanac and 
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in the Air Almanac for various Greenwich times on various dates during 

the year. These tabulated absolute co-ordinates are the result of com- 

putations based on observations made with extensive apparatus at 

astronomical observatories. The time variable necessary for looking 

up any required absolute co-ordinate is given by a chronometer which 

indicates — with known corrections — Greenwich civil time. 

Since the hour angle co-ordinate depends on the point of observation, 

it cannot be tabulated. Because hour angles cannot be measured by 

direct observation, they must be computed as unknown angles in spheri- 

cal triangles in terms of a directly observable co-ordinate “altitude”’ devel- 

oped below and illustrated in Figures 157 and 158. 

Derinitions: The point, labeled Z, on the celestial sphere which, at the 

moment of observation, ts the projection of the particular observer’s position 

on the earth’s surface is called the observer’s zenith or the zenith. The 

diametrically opposite point on the celestial sphere is the observer’s nadir, 

labeled Na. 

The zenith is therefore the point on the 

celestial sphere which the observer sees 

directly over his head at the moment. 

For this reason the zenith on figures of 

the celestial sphere is generally placed at 
the top of the figure. The zenith on the 

celestial sphere is a point continuously 

moving with constant angular velocity 

from west to east about the celestial pole 

and on the small circle of the celestial 
sphere of constant declination equal to 

the observer’s latitude. (See Figure 154.) Figure 154 

In Figure 154 P; is a point of observation on the earth’s surface, and P» 
is a later position of this same point — due to the earth’s axial rotation. 
Z, and Z, are the corresponding positions of the zenith of the observer, and 
Nay is the nadir of Pi. 

Derinition: The observer’s celestial horizon or the horizon, labeled 
NESW, 2s the great circle on the celestial sphere which ¢s polar to the zenith 
and the nadir. 

The theoretical horizon is the intersection of the celestial sphere with the 
horizontal plane of the observer, that is, the plane tangent to the earth’s 
surface at the point of observation. (See Figure 155 where the scale is ig- 
nored.) The visual horizon* is the horizon actually seen from a point neces- 

* The difference between the visual horizon and the theoretical horizon is measured by 
the errors of Dip and Refraction. The former corrects observations based on the visual 
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sarily somewhat above the earth’s surface, and used in making observations. 
These two horizons are ordinarily so closely approximated by the celestial 
horizon that we shall consider them as coinciding with this celestial horizon 
shown in Figure 156. 

estial SPhar> 
cel 

heoretigar nove 

Visual horizo™ 

Celestial horizo™ 

Ficure 155 Figure 156 

The position of a heavenly body at a given instant can now be simply 

described entirely in terms of the particular point of observation: The 

star can be said to bear from the observer so many degrees east or west 

of north and to be so many degrees above the horizon. This first co- 

ordinate is called the “azimuth” of the observed body and the second 

its “altitude.” The following definitions will systematize these con- 

cepts. 

Derinition: The celestial great circles through the zenith are called 

vertical circles. 

The observer’s meridian is, therefore, a vertical circle, the particular 

one through the poles. 
Derinition: The intersections of the observer’s meridian with the horizon 

are called the north and the south points of the horizon. They are 

labeled N and 8, respectively. 

TuroremM: The intersections of the horizon with the equinoctial are mid- 

way between the north and south points of the horizon and are, therefore, 

called the east and west points of the horizon, being labeled EK and W, 

respectively. 

horizon for height of eye above the earth’s surface; the latter corrects for the bending of 

light rays due to variations in the density of the earth’s atmosphere. ; 

The difference between the theoretical horizon and the celestial horizon is measured by 

the error of parallax. (See page 121.) 
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In Figure 156, because H and W are the intersections of the polars of Z 

and Py, they are the poles of the great circle, NPyZS, which passes through Z 

and Py (see Introduction, 6g). Hence, E and W are both 90° of are from all 

points on NZPyS and, therefore, are 90° of arc from N. 

Derinition: The angle at the zenith between the observer's meridian and 

the vertical circle of the observed celestial body is the azimuth (abbreviation 

A,) of the body at this instant. The azimuth is measured from the part of 

the observer's meridian between the zenith and the nearer pole to the ob- 

served body’s vertical circle and is described as being either east_or west 

from the nearer pole. | 

Derinition: The angular distance on an observed body’s vertical circle 

between the horizon and the celestial body is the body’s altitude (abbreviation 

h). The altitude is described as being either above or below the horizon ac- 

cording as the observed body is so characterized. 

In Figure 157 the following co-ordinates for the star M are shown. 

1. Its (absolute) declination, d, tabulated in the almanacs. 

2. Its altitude, h, relative to the particular point of observation of 

latitude, lat., and longitude, long. This altitude is subject to accurate 

observation with a sextant at sea and a sextant or transit on land.* 
This altitude changes with the time of observation. 

3. Its azimuth, A,, relative to the particular point of observation. 

This azimuth is generally computed from other parts of the spherical 

triangle PZM but can be roughly observed with an azimuth circle at 

sea and more accurately with a transit on land.* This azimuth changes 

with the time of observation. 

4. Its hour angle, ¢, relative to the particular point of observation. 

This hour angle is never observed. It is directly computed from tabu- 

lated data of WZ in an almanac when the Greenwich time and the longi- 

tude of observation are known. It can also be computed from the solu- 

tion of the PZM spherical triangle when, in addition to A and d, the lati- 

tude of the point of observationis known. The hour angle changes with 

the time of observation. 

The spherical triangle PyZM in Figure 157 is of fundamental impor- 

tance in problems involving fixing positions by means of celestial ob- 

servation. It is therefore emphasized by the 
Derinition: The spherical triangle on the celestial sphere whose vertices 

are a celestial pole, an observer’s zenith, and an observed star is called the 
astronomical triangle and is labeled by its vertices as the “PZM triangle.” 

Examples of the solution of astronomical triangles are given in section 
55. 

* See Appendix ITT. 
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Figure 158 shows the star M referred to all three co-ordinate systems: 
the declination-right ascension system, the declination-hour angle sys- 
tem, and the altitude-azimuth system. 

The co-ordinates of M in the three systems of co-ordinates discussed 
above and pictured in Figure 158 are here tabulated. 

Right Ascension- Hour Angle-Declination Azimuth- Altitude 
Declination System System System 

Right Ascension: Hour Angle:t=X ZPyM, Azimuth: A,=xX PyZM 
RAB PT PyM, measured 

measured to to the 
the east. west. 

are w i G 
[Sidereal Hour Angle: Declination: d= are CM Altitude: h = are BM 

Bdt.A.= 2% Ff PM, 
measured to 
the west.] 

Declination: d = arc CM 

49. Problems on Sections 47-48 

Note: The excerpts from the Air Almanac given in Appendix IV, page 242, 
are essential to the solution of most of the problems below. 

1. Represent each of the following stars on a separate diagram of the celestial 
sphere. In each case place the first point of Aries — vernal equinox — so that 
the particular star represented will appear on the side of the sphere out from 
the paper. Mark the right ascension, declination, and sidereal hour angle of 
each star. 

(a) Rigel. (b) Alpheratz. 
(c) Arcturus. (d) Kochab. 
(e) Canopus. (f) Sirius. 

2. In each of the following cases make a large sketch of the horizon and 
zenith on the celestial sphere for an observer in the given latitude. Show the 
poles and the equator on each sketch; likewise the apparent paths of the given 
stars, using a different color for each star. Mark each star in its apparent path 
at the instant for which the first star is directly south of the observer. Label 
the altitude, azimuth, and hour angle of the second star and give the value 
of this hour angle. Label the sidereal hour angle and declination of the third 
star. 

(a) Lat. 30° N.; Aldebaran, Capella, Antares. 
(b) Lat. 20° S.; Fomalhaut, Deneb, Achernar. 
(c) Lat. 60° N.; Etamin, Kochab, Alphard. 
(d, Lat. 50° S.; Achernar, Betelgeux, Vega. 

3. For each of the following sets of data make a properly labeled sketch 
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showing the horizon and zenith for an observer in the given latitude. On this 

sketch show the sun’s apparent path for the given date: 

(a) Lat. 50° N.; Winter Solstice. (b) Lat. 20° S.; Winter Solstice. 

(c) Lat. 10° S.; Summer Solstice. (d) Lat. 40° N.; Summer Solstice. 

(e) Lat. 0°; Autumnal Equinox. (f) Lat. 38° N.; Vernal Equinox. 

(g) Lat. 70° N.; Summer Solstice. (h) Lat. 72° N.; Winter Solstice. 

4. For an observer in the given latitude (1) which of the stars below are 

visible at all times on every cloudless night? (2) Which are visible at some time 

during some cloudless nights? (3) Which are never visible? 

(a) Lat. 40° N.; Alioth, Canopus, Caph, Pollux, Fomalhaut. 
(b) Lat. 25° S.; Alphecca, Kochab, Spica, Acamar, Miaplacidus. 
(c) Lat. 5° N.; Acrux, Polaris, Dubhe, @ Tri. Aust., @ Centauri. 

5. In each of the following cases draw a sketch of the horizon and zenith 
for an observer in the given latitude. Then picture the given star when ob- 
served with the given altitude. Mark on this sketch the star’s altitude, azimuth, 
hour angle, and declination, and also the observer’s latitude. Estimate from 
the sketch the hour angle and azimuth of the star. 

(a) Lat. 50° N.; Alphecca; altitude 55° in the western sky. 
(b) Lat. 20° N.; Sirius; altitude 30° in the eastern sky. 
(c) Lat. 30° S.; Spica; altitude 60° in the eastern sky. 
(d) Lat. 10° N.; Mizar; altitude 30° in the western sky. 
(e) Lat. 45° S.; Canopus; altitude 30° in the western sky. 
(f) Lat. 10° N.; Fomalhaut; altitude 25° in the eastern sky. 

6. In each of the following cases draw a sketch of the horizon and zenith 
for an observer in the given latitude and show the sun at the given time of day 
on the given date. Draw the ecliptic, and estimate from the sketch the sidereal 
hour angle of the projection of the observer’s meridian on the celestial sphere 
at this instant. 

(a) Lat. 40° N.; sunset, Vernal Equinox. 
(b) Lat. 40° N.; sunrise, Winter Solstice. 
(c) Lat. 10° S.; sunset, August 1, 1943. 
(d) Lat. 0°; sunrise, August 1, 1943. 

7. Assuming the visible stars to be uniformly distributed on the celestial 
sphere, relate the number of stars which a terrestrial observer could see during 
the year to the observer’s latitude. What is the criterion for the possibility of 
an observer’s seeing a given star on some cloudless night during the year? 

8. (a) Name all the fifty-five “Navigational Stars” which are invisible in the 
south temperate zone (between the tropic of Capricorn, lat. 23° 27’ §., and 
the Antarctic Circle, lat. 66° 33’S.). 

(b) Name all the fifty-five “Navigational Stars” which are invisible within 
the Arctic Circle (lat. 66° 33’ N.). 

_ 9. For each of the following stars, state where a terrestrial observer must be 
if he is never to be able to see the star. 

(a) Ruchbah. (b) Rigil Kentaurus. 
(c) e« Argus. (d) Sirius. 

(e) Peacock. (f) Procyon. 

(g) Capella. (h) Alnilam. 
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10. For an observer on the equator give the time, in sidereal hours and 
minutes after sunset on the day of the vernal equinox and again on the day of the 
autumnal equinox, at which the following stars are either due north or due 
south that of the observer: 

(a) Regulus. (6) Y Crucis. 
(c) Betelgeux. (d) Hamal. 

Part THREE: Applications of Celestial Co-ordinates to Direction, 

Time, and Position 

50. Culminations and Elongations of Celestial Bodies 

Because of the earth’s axial rotation, all the stars appear to travel in 

small circles about the poles on the celestial sphere. For any given ob- 

server, depending only on his latitude, some of these apparent paths are 

totally invisible, some are partly visible, and the rest are visible in en- 

tirety. In this sense a star’s apparent path is considered to be visible 

if its position on the celestial sphere is visible (that is, above the ob- 

server’s horizon), whether or not, at the time, the location of the sun 

makes the star itself visible. . 
Derinition: Stars whose small-circle paths are entirely visible to an 

observer are called circumpolar stars for the latitude of the observer. 

Stars which are circumpolar for a given latitude are always visible to 

an observer in this latitude on a cloudless night. 
For a given observer certain points in these small circle apparent paths 

of the stars possess special interest. If a star is ever visible to an ob- 

server, it will at some time be visible when on the observer’s meridian. 

In such a position the altitude of the star is instantaneously static, being 

midway between positions of increasing and positions of decreasing al- 

titude. Hence, the altitude is best observed at this point. For cir- 

cumpolar stars two points of crossing the observer’s meridian will be visi- 

ble. These points of meridian crossing are defined independently of 

their visibility to a given observer: 
Derrinition: The instant at which a star crosses that half of an ob- 

server’s meridian which contains the zenith (nadir is called the instant of 

upper [lower] culmination or upper [lower] transit of the star for the 

point of observation. The star is then said to be in upper [lower] cul- 

mination or in upper [lower] transit at the point of observation. 

When a star is in culmination it is either due north or due south of the 

observer and is in the most favorable position for measuring altitude. 

In Figure 159 the upper and lower culminations of three stars are marked. 

One of these three stars is circumpolar for the illustrated point of ob- 
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Figure 159 : Ficure 160 

servation, and another is totally invisible for this point of observation. 

The instants of upper and lower culmination must occur twelve sidereal 

hours apart. The Greenwich times of upper culmination of certain 

stars at Greenwich are tabulated in the Nautical Almanac. 

The latitude of an observer can be obtained at once by a meridian al- 

titude observation, that is, an observation of a star in a particular cul- 

mination. The necessary calculation (see Figure 160) consists of: 

a. drawing a circle to represent the observer’s meridian; 

b. representing thereon the observed star properly placed for its 

particular culmination and for the point on the horizon — north 

or south — from which the star’s altitude was observed; 

c. marking on this figure the star’s tabulated declination and ob- 

served altitude; and then 

d. solving for the latitude from the figure. 

In Figure 160 the star M is shown in lower culmination. Q and Q’ 

represent the intersections of the observer’s meridian with the equator. 

Then Q’M = d, the star’s declination, and NM = h, the star’s altitude 

as measured from the north point on the horizon. Hence 

Q’N =d—-h=S8Q 

But QZ = Latitude = 90° — SQ. 

The student should carefully avoid memorizing any formulas for meridian 

altitude problems. The fundamental concepts of declination, altitude, 

and upper and lower culmination, when simply illustrated on a figure, 
will always suffice. 

For every visible star there are, as we have said, instants for most 
favorable observations of altitude, namely, the culminations. For 
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some stars there are also instants for the most favorable observations of 

azimuth.* Figure 161 pictures the apparent small-circle paths, c, and 

2, of two stars. c, does not but cz does encompass the zenith. As the 

star M, appears to move on ¢; from upper culmination, its azimuth first 

increases to the west up to a certain western maximum value, represented 

by the angle PyZE,,, and then decreases to zero at the star’s lower cul- 

mination. As the star continues in its small circle, its azimuth increases 
to the east up to a certain eastern maximum value, represented by the 

angle PyZE,, and then decreases to zero at upper culmination. The 

azimuth of the star Ms, on the other hand, always decreases in western 

azimuth from 180° at upper culmination to 0° at lower culmination and 

then always increases in eastern azimuth from 0° to 180° at upper cul- 

mination again. The points #,, and F, of stars of the type of M@,— 

whose small-circle paths do not include the zenith — are points at which 

the star’s azimuth can be most accurately observed, for at such points 

the azimuth is momentarily static, as it is changing from an increasing 

function to a decreasing function, or vice versa. 
DerinitTion: When a star, which crosses the observer’s meridian on the 

same side of the zenith at both upper and lower culminations, attains a 

maximum eastern [western] azimuth, the star is said to be in eastern [west- 

ern] elongation for the point of observation. 
In Figure 161 the points of eastern and western elongation are labeled 

EH, and E,,, respectively. 

For stars, such as Polaris, which have large declinations and hence 

small polar distances, the azimuth changes very slowly at the elonga- 

tions. The exact times of elongations of Polaris for a given exact longi- 
. 

* Most accurately observed with a transit. See Appendix III. 
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tude and approximate latitude of observation can be computed from 

data in the Nautical Almanac. If a surveyor does not have exact time, 

he can watch Polaris through a transit telescope well before the esti- 

mated approximate time of elongation. The instant at which the 

slowly increasing azimuth begins to slowly decrease (or vice versa) will 

then be the instant of elongation. Having thus determined the direc- 

tion from the point of observation of Polaris at elongation, the surveyor, 

by computing the value of this maximum azimuth, will have established 

a line of known true direction. By Introduction, 8 g, the vertical circle 

and the hour circle to a point of elongation are mutually perpendicular, 

since the vertical circle to a point of elongation is obviously tangent to 

the small-circle path of the star of this point of elongation. Conse- 

quently (see Figure 162), the computation of a star’s azimuth at elonga- 

tion simply involves the solution of a right PZM spherical triangle with 

the right angle at M in elongation. Note that, although culminations 

occur twelve sidereal hours apart, elongations do not, in general, occur 

six sidereal hours before or after a culmination. That is, the angle at 

Py is not, in general, a right angle. 

51. Problems on Section 50 

Note: Excerpts from the Air Almanac and the Nautical Almanac in Appen- 
dix IV are to be consulted for the solutions of some of the problems in this list. 

1. State the condition under which a star is circumpolar for a given point of 
observation on the earth’s surface. 

2. (a) Does a star which is cireumpolar for a certain latitude possess points 
of elongation for this latitude? Illustrate with a sketch. 

(b) Comment on the question converse to that in a. Illustrate. 
(c) Under what condition is a star both cireumpolar and possessed of 

points of elongation for a given latitude? 
(d) Name two stars which are both circumpolar and possessed of points 

of elongation for points in the following latitudes: (1) 29° N., (2) 60° 8. 
(e) Using Introduction, 8 f, on a sketch approximately locate the points 

of elongation in the apparent path of the star Vega for an observer in lati- 
tude 20° N. 

3. What can be said of the time intervals between eastern and western 
elongations of a given star and the observer’s latitude? 

4, Find the latitude of the points of observation for which the following 
tabulated meridian-altitude data apply. 

Observed Altitude Bearing of Type of Tabulated Declination 
of the Star the Star Culmination of the Star 

(a) 40° North Lower 70° north 
(b) 10° 30’ North Upper 30° 20’ north 
(c) 52° 25" South Upper 06° 35’ north 
(d) 26° 18’ South Lower 41° 13’ south 
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5. What can be said of the number of circumpolar stars relative to the ob- 
server's position on the earth’s surface? What is the numerical condition for a 
given star to be circumpolar for a given observer? 

6. On May 30, 1943 (see Polaris Table in Appendix IV), in latitude 35° 37’ 
30” N., a surveyor, having estimated the approximate hour of the approaching 
western elongation of Polaris, continuously observes this star with his transit. 
At the instant of elongation, as determined by the star’s apparent vertical mo- 
tion, the surveyor clamps together the upper and lower plates of the transit to 
prevent horizontal motion of the telescope and then has a stake set in the line 
of sight of the telescope. Through what angle must the telescope then be 
turned to set a second stake due north of the point over which the transit is 
placed? 

7. Solve problem 6 for the following data and find also the hour angle of 
Polaris at elongation. 

. Date Latitude Kind of Elongation 

(a) July 19, 1943 16° 05’ 40” N. eastern 
(6) Dee. 15, 1943 62° 147 152 N. western 
(c) April 15, 1943 49° 25’ 40” N. western 
(d) Jan. 4, 1944 38° 05’ 30” N. eastern 

8. Find the latitude of the points of observation for which the following 
tabulated meridian-altitude data apply: 

Star Bearing Type of Observed 
of Star Culmination Altitude 

(a) Canopus South Lower ZACAQLI207 
(b) Achernar South Upper 61° 10’ 40” 
(c) Bellatrix North Upper 32° 42’ 30” 
(d) Denebola South Upper 5a. 18’ 00” 
(e) Alioth North Lower 24° 50’ 40” 

52. Time and the Mean Sun 

Reference has repeatedly been made to the time at which certain ob- 

servations are made and in particular to the Greenwich time of various 
celestial phenomena. It is now necessary to systematize the general 

concept of time and to define the various systems in current use. 
Since a solar day is the time interval between two successive coin- 

cidences of the projection of any given terrestrial meridian with the 

projection of the sun on the celestial sphere, and since (because of the 

earth’s orbital revolution) the sun’s projection is not fixed but slowly 

moves ‘backward’ — that is, from west to east — along the ecliptic 

by about one degree a day, the length of a solar day depends not alone 

on the earth’s axial rotation but also upon its orbital revolution. The 

axial rotation of the earth is extraordinarily constant, which means that 

sidereal days are of constant length. But the fact that the length of 

days depends on the orbital revolution of the earth makes for two diffi- 
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culties in securing the prime requisite for timekeeping — days of equal 

length. The difficulties are these: 

1. The sun’s projection on the ecliptic does not move with a constant 

speed. 

This speed exactly reflects (as it is caused by) the earth’s orbital revolu- 

tion. The earth and the sun, like all other pairs of bodies in space, are 

attracted to one.another by a force which increases as the distance separating 

them decreases. The earth’s orbit is an ellipse with the sun at one focus. 

Since the earth’s speed of revolution in its orbit is a measure of the force of 

attraction between the earth and the sun, the speed of orbital revolution of 
the earth must be greatest at perihelion and least at aphelion. 

2. The sun’s projection moves on the ecliptic and not on the equinoc- 
tial. Consequently, even if the backward — that is, west to east — 

motion of the sun’s projection on the ecliptic were uniform, the cor- - 
responding backward turning of the sun’s celestial meridians at noon 

on successive days would not be uniform. 

In Figure 163 the sun’s projection is 
shown at two different points, A, and 
Ao, on the ecliptic, that is, for two 
different times of the year. The celes- 
tial meridians of A; and A» are pictured 
as intersecting the equinoctial at C, and 
Ce, respectively. PyQ is the meridian 
to the point on the equinoctial 90° of 
arc from the first point of Aries. Then, 
if A; and A» are on opposite sides of 
PyQ, by Napier’s Corollary 3 

WitCau< SA a ent woes Cyose= to) Aus: 

Hence, if A: moves uniformly along the Ficure 163 
ecliptic from the first point of Aries, C; 
will not move uniformly along the equinoctial but will alternately move 
more slowly and more rapidly. 

But this backward motion of the sun’s meridians represents the daily 

amount by which the length of a solar day is greater than the length of a 
sidereal day. Since sidereal days are of constant length, solar days, if 
measured between successive coincidences of the projection of a given 
terrestrial meridian with the meridian of the sun’s projection, will not 
be constant. (Since the earth’s orbit is only slightly elliptical, the ec- 
centricity being %,, this second of the two causes of solar days of vary- 
ing length is the more important.) 

Because days of varying length would be impossible to measure by 
any but impractically intricate clocks and watches, the sun’s actual 
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projection on the ecliptic is replaced, for purposes of mechanically meas- 
uring time, by the Mean Sun. 

DEFINITION: The mean sun is a fictitious heavenly body having the three 
properties: 

1. It moves in the equinoctial (not in the ecliptic). 
2. Its speed in the equinoctial is constant, and, since it completes one 

circuit of the equinoctial in one year, its speed is the mean speed of the sun 
in the ecliptic. 

3. Its position is always near the projection of the real sun by virtue of 

the fact that the right ascension of the mean sun is made equal to the mean 
celestial longitude of the sun, where by 

Dertnition: Celestial longitude is longitude on the celestial sphere measured 
by meridians through the pole of the ecliptic, the base meridian being through 
the first point of Aries. 

The difference between the mean celes- 
tial longitude and the actual celestial 

longitude of the sun is specified to be zero 

at perihelion. 

In Figure 164 > is the projection of the 
true sun at a given time of the year, and 
M is the position of the mean sun at this 
same time. II is the pole of the ecliptic. 
Then angle (ILD is the celestial longitude 
of the true sun, and angle 7 PyM is the 
right ascension of the mean sun. Angle 
T PyM equals angle ILD at perihelion. Figure 164 

At other times angle { PyM is equal to 
the celestial longitude of the sun assuming its projection on the ecliptic moved 
with constant speed beginning at perihelion. 

Time based on this mean sun can be recorded by watches and clocks, 

since the days in such a system of time will be of equal length. 

There are four distinctly different systems of time in current use. 

Each system is frequently called by alternate names to emphasize the 

feature of the system which is particularly pertinent to the discussion at 
hand. ‘These four systems of time are listed below with their alternate 

titles. The definitions describing each system follow this listing: 

I. Mean time; synonymous with 

a. mean solar time, local mean solar time, 

b. civil time, or local civil time. 

Il. Apparent solar time; synonymous with 

a. true solar time, 

b. local apparent time. 
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Ill. Sidereal time; synonymous with 

a. local sidereal time. 

IV. Zone time; synonymous with * 
a. standard time, 

b. “clock time,” legal time (modified zone time in some cases), 

c. summer time, daylight saving time, war time (modified legal 

time). 3 

I. Mean time 

a. is based on the mean sun, 

b. measured from midnights, 

c. uniformly elapsing, 

d. not directly observed but determined by correcting the 

directly observed apparent time, 

e. recorded by chronometers. — 

DsFIniTIon: A mean solar day is the time between two successive lower 

culminations of the mean sun with any given terrestrial meridian — more 

exactly, with the projection of this terrestrial meridian on the celestial 

sphere. 
Derinitions: The instant of upper [lower] culmination of the mean 

sun with any given meridian is called mean noon, or local mean noon 

[mean midnight, or local mean midnight], at this meridian for this 

particular day. 

Mean solar days are therefore measured from the midnight of the 
previous day to the midnight of that day. 

Previous to 1925 each mean solar day began at noon. The term ‘‘mean 
civil time” for mean time emphasizes the fact that since 1925 mean solar 
days begin at midnight as do civil days. 

Each mean day is divided into twenty-four equal hours beginning at 0” 

at midnight of the previous day and running to 24” at midnight of that 
day. 

DEFINITION: The mean time at any point on the earth’s surface at any 

given instant vs the hour angle of the mean sun at this point increased by 
twelve hours.t 

DEFINITION: Greenwich civil time (or, less explicitly, Greenwich 
time) is mean time at Greenwich, England. 

Chronometers are kept at all observatories and on all ships to indicate 
Greenwich time. (See Appendix III, Part II.) 

II, Apparent solar time 

a. is based on the true sun, 

* Notice the modifications. + Modulo 24. 
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b. measured from midnights, 

c. not uniformly elapsing, 

d. directly observed, 
e. not directly recorded but corrected from the chronometer. 

D=FINiTions: Apparent solar day, apparent noon, apparent midnight, 
and apparent time are defined exactly as are the corresponding terms in 

the mean time system by replacing the term “mean sun” by the term “true 
sun.” 

DerFrnition: The equation of time is the difference between apparent 

tume and mean time. At any given instant the equation of time consists of 

a signed solar time interval in minutes and seconds to be applied to the mean 

time at this instant to give the apparent time at this instant. 

Since the mean sun, unlike the true sun, cannot be directly observed, 
chronometers for recording the uniformly elapsing mean time are checked 
by first directly observing the nonuniformly elapsing apparent time and 
then correcting this by the equation of time. The equation of time can 

be read from either almanac; directly from the Nautical Almanac and 
by means of simple calculations from the Air Almanac. The maximum 
numerical value of the equation of time is between sixteen and seventeen 

minutes of time (see problem 11, section 53). 
III. Sidereal time 

a. is based on the first point of Aries (the vernal equinox), 
b. measured from noons, 

c. uniformly elapsing, 

d. directly observed, 

e. recorded by sidereal clocks. 
DEFINITION: A sidereal day is the time between two successive upper 

culminations of the first point of Aries (the vernal equinox). 
Dertnition: The sidereal time at Py 

any point on the earth’s surface at a 

given instant ts the hour angle of the 

first point of Aries at this point. 

Since hour angles are measured from 
the observer’s meridian westward to _, 
the celestial body’s meridian, and Q 

since right ascension is measured ores hea 

from the meridian of the first point of 

Aries eastward to a given meridian, it 

follows (see Figure 165) that the s1- 

dereal time along any terrestrial me- e 

ridian at a given instant is the right as- Figure 165 
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cension of this terrestrial meridian — or its projection on the celestial 

sphere — at this instant. Sidereal days are divided into 24 equal hours 

beginning at 0° when the first point of Aries is in wpper transit at the 

given terrestrial point (“‘sidereal noon”) and running up to 24” when 

this situation next obtains. Clocks or watches adjusted to keep si- 

dereal time are called sidereal clocks or sidereal watches. ‘They will 

necessarily gain very nearly four minutes a day on ordinary clocks and 

watches regulated to keep mean solar time. The truth of the following 

theorem is immediate: 
TurorEM: For a given observer the hour angle of a fixed star at any in- 

stant ts the time in sidereal units since the fixed star was last ‘“‘on the ob- 

server’s meridian”’; that is, since the projection of the observer’s meridian 

last coincided with the star’s hour circle. 
IV. Zone time 

a. is based on mean time at meridians whose longitudes are 

integral multiples of 15°, 

b. measured from midnights, 
c. uniformly elapsing, 

d. not directly observed but checked by reference to chro- 
nometers, 

e. recorded by watches and clocks. 
DEFINITION: Zone time is the mean solar time at the nearest meridian 

whose longitude is an integral multiple of 15°. 

These meridians, therefore, define the centers of the respective time 

zones. The zone clock time at a given instant is, therefore, the same for 

every point in a given zone, and the zone times at a given instant at any 

two points on the earth’s surface differ, if at all, by an integral number of 

hours. Figure 166 illustrates the division of the earth’s surface into 

time zones. Note that the zone for which the 180° meridian is the center 

is peculiar in that, though the watch time throughout this whole zone 

is everywhere the same, the actual time in the western half of this 

zone is exactly one day later than the time in the eastern half of this 
zone. 

Derinition: The legal time of any locality on the earth’s surface is the 
zone time of either the time zone in which this locality lies, or the nearer 
neighboring time zone when statutory regulations so decree for the sake of 
avoiding confusion in the midst of populous areas. 

For this reason the International Date Line does not exactly follow 
the 180° meridian but varies from it to avoid passing through large 
masses of land. Watches and clocks in common daily use are set to the 
legal times of the localities in which they are in use. 
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Fiaure 166 

DEFINITION: Summer time, daylight-saving time, or war time are 

temporary modifications of the above defined legal time (and then themselves 

become legal time) by which the time in any given locality is decreed to be 

one hour later than the regularly defined legal time. 

In civil practice the twenty-four hour legal day is customarily divided 

into two series of twelve hours each, one series, labeled A.M., running 

from midnight of the previous day to noon and the other series, labeled 

P.M., running from noon to midnight of that day. 

Summary of Time Systems 

Sidereal time is theoretically the most satisfactory system of time. 

It is directly observable by means of instants of transits of stars and it is 

uniformly elapsing. But, because the sun is a so much more spectacular 
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body than any other star, solar time is the more natural system for daily 

use. Because apparent solar time is not uniformly elapsing, it is modi- 

fied by the theoretical concept of the mean sun to give the uniformly 

elapsing, but not directly observable, mean time. Finally, zone time 

and legal time are practical adaptations of mean time to the earth’s 

surface as a whole; in zone time and legal time noons will occur in each 

locality within less than an hour of the instants at which the sun is high- 

est in the heavens for that locality (except that in the case of the tem- 

porary time systems this local difference between legal and true noon 

may be as much as nearly two hours), and at any given instant the min- 

ute hands of all ordinary time pieces will everywhere indicate the same 

number of minutes. 

53. Problems on Section 52 

Note: The excerpts from the Air Almanac given in Appendix IV are essential 
to the solutions of many of the problems in this list. 

1. By means of a suitable figure prove the 
Tueorem: The sidereal time of 0° mean solar time at any point on the earth’s 

surface is equal to twelve hours plus the right ascension of the mean sun at that 
instant. ; 

State the relation between the sidereal time and the sun’s sidereal hour angle. 

2. (a) Ona figure of the celestial sphere show the equinoctial, ecliptic, mean 
sun, true sun, and the projection of the Greenwich meridian at 0° Greenwich 
civil time on August 1, 19438. (See the Air Almanac for this day.) 

(b) Find the equation of time at 0° G.C.T. on August 1, 1943, and again 
at 1:42:26 P.M., G.C.T. (Suggestion: Compare the G.H.A. of the true 
and mean sun.) 

3. (a) Ona figure of the celestial sphere show the equinoctial, ecliptic, vernal 
equinox, mean sun, true sun, and the projection of the Greenwich meridian 
at 5:20 P.M., G.C.T. on August 1, 1948. 

(>) Find the sidereal time at the beginning of this day at Greenwich and 
again at noon. By how much has sidereal time gained or lost on mean solar 
time in this half day? (Note that 1’ of time = 15° of arc; 1” of time = 15’ 
of are, etc.) 

4, Draw a large sketch of the celestial sphere showing the horizon and zenith 
for an observer in the given latitude and also the equinoctial and ecliptic for the 
given sidereal time. On this sketch show the sun on the ecliptic at the given 
hour of local apparent time. From this sketch estimate the approximate time 
of year: 

(a) Lat. 30° N., sidereal time 3”, local apparent time 2 P.M. 
(b) Lat. 60° N., sidereal time 20’, local apparent time 4 A.M. 
(c) Lat. 20° S., sidereal time 4*, local apparent time 11 P.M. 

5. Find the local zone time, that is, watch time without war time or daylight 
time, and the local mean time for the following apparent times: 

(a) 9:08:24 A.M. at New York (lat. 40° 40’ N., long. 73° 50’ W.) on 
August 1, 1943. 
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(6) 2:04:08 P.M. at Moscow (lat. 55°45’ N., long. 37° 36’ E.) on August 1, 
1943. 

(c) 7:32:48 A.M. at Tokyo (lat. 35° 40’ N., long. 139° 45’ E.) on August 2, 
1943. 

(d) 4:12:20 P.M. at Honolulu (lat. 21° 18’ N., long. 157° 51’ W.) on July 31, 
1943. 

6. Find to within 4 seconds the San Francisco watch time, that is, war time 
for the particular time zone, at which it will be apparent noon in San Francisco 
(lat. 37° 45’ N., long. 122° 27’ W.) on August 1, 1943. What will be the local 
mean time at this instant? 

7. Find the sidereal time at the following places for the given zone war times. 
(a) 214 20” at Dallas, Tex. (lat. 32° 47’ N., long. 96° 48’ W.) on July 31, 

1943. 
(b) 03* 40” at Cairo, Egypt (lat. 30° 02’ N., long. 31° 21’ E.) on August 1, 

1943. 
(c) 054 10” at Dunedin, N.Z. (lat. 45° 52’ S., long. 170° 32’ E.) on August 2, 

1943. 

8. Find the right ascension, declination, and local hour angle of the planet 
Venus at Cape Town (lat. 33° 55’ S., long. 18° 22’ E.) at 9:40 P.M. local watch 
time — assuming war time — on August 1, 1943. 

9. In each of the following cases a terrestrial observer on August 1, 1943, 
measures the altitude of the given heavenly body at upper culmination and 
notes the Greenwich civil time of this observation. Find the position of the 
observer in each case. 

Star Altitude at Direction G.C.T. of 
or Planet Upper of Star Observation 

Culmination or Planet 

(a) Rigil Kent. 65° 08’ 30” South 16* 41” 23s, 
(b) Antares 49° 30’ 00” South 08* 19” 148, 
(c) Mars 65° 05’ 00” North 02* 07 18s, 
(d) Venus 24° 36’ 20” South 214 22™ 433, 
(e) Acamar 40° 53’ 00” South 12’ 13” 03s. 
(f) Ruchbah 65° 08’ 40” North O7* 03” 55s. 

10. On August 1, 1943, at the given known longitudes the upper transits of 
the following stars were observed at the given observed chronometer instants. 
Compute the error in the chronometers in indicating G.C.T. 

(a) long. 116° 41’ W., Deneb, 08* 05” 10+. 
(b) long. 29° 54’ E., Altair, 20% 53” 05». 

11. The Figure-Eight-Shaped Diagram of the Equation of Time Frequently 

Seen on Globes of the Earth. 
(a) Assuming that the earth’s orbital motion were uniform (that is, con- 

sidering just the second factor discussed in section 52 as necessitating the 

convention of the mean sun), how many times during a year would you 

expect the equation of time to change sign? One of the instants at which the 

equation of time is zero in 1943 occurs on Christmas Day, which is just after 

the winter solstice, December 22, and just before perihelion, very early in 

January. Accordingly, under the assumption given above, give the approxi- 
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mate period or periods in the year during which the equation of time would 

be respectively positive and negative. ' 

(b) Assuming the earth’s orbit were in the plane of the equinoctial (that 

is, considering just the first factor discussed in section 52 as necessitating the 

convention of the mean sun), how many times during a year would you 

expect the equation of time to change sign? Give the approximate period or 

periods in the year during which the equation of time would be respectively 

positive and negative. 
(c) The earth’s orbit, being elliptical with eccentricity 5, is almost 

circular, so that the earth’s orbital motion is very nearly uniform. Conse- 
quently, the fact that the true and mean suns are on different circles on the 
celestial sphere is much more significant than the earth’s variable orbital 
motion in the equation of time. Accordingly, how many times during the 
year would you expect the equation of time actually to change sign? 

(d) For the year 1943 the extreme and zero values of the equation of time 
occur sometime during the following days: 

Feb. 12 — 14” 20.9 July 27 — 6” 232.0 

Apr.16  00”00:.0 Sept. 2 00" 00.0 
May 14 + 3” 46:1 Nov. 3 +16” 21°.9 
June 14 00” 002.0 Dec. 25 00” 002.0 

Explain in the light of parts (a), (6), and (c) why 
the magnitudes of the extreme values of the equa- 
tion of time and likewise the time intervals be- 
tween these extreme values and the next zero 
values are so variable. Note that the equation 
of time is roughly pictured on artificial globes of 
the earth by a diagram in the shape of a figure 
eight, usually placed in the eastern Pacific Ocean. 
One loop of this ‘eight’ is much longer and wider 
than the other loop because of the facts explained 
above. (See Figure 167.) FiGuRE 167 

54. Altitude Observations for Determining Position: Lines of Position 

As the earth rotates at the center of the celestial sphere of fixed stars, 
different points on the earth’s surface are successively brought directly 
underneath any particular star. 

DEFINITION: A point on the earth’s surface is at a given instant the 

substellar [subsolar] point of a given star |the sun], if the particular star 

[the sun] is at that instant at the zenith of the point. 
The substellar or subsolar point is the point on the earth’s surface at 

which the star’s or sun’s altitude is instantaneously 90°. Since celestial 
declination, which is practically constant for any given fixed star, is 
measured from the projection of the terrestrial equator, from which ter- 
restrial latitude is measured, it is evident (see Figure 168) that those 
points on the earth’s surface which at some time during the day are sub- 
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FricureE 168 Figure 169 

stellar with respect to that star lie approximately on the same parallel 

of latitude and on that parallel for which the latitude is equal to the 

star’s declination. 

THEOREM: A point on the earth’s surface at which a given star, M, has 

an altitude h must at the instant lie on that small circle of the earth whose 

pole, M, is the substellar point of M and whose arc distance from M is 

equal to the complement of h. 
Pw 

This follows directly from Figure 169 
when it is recalled that lines of sights to Savino! 
a fixed star from two different points on the Cie ae 
earth’s surface must be considered parallel, a 
because of the great remoteness of fixed raskeaea 
stars from the earth. 

This theorem gives a theoretical means 

for determining the hitherto totally un- 

known position of a point of observation: 

If altitudes of two different stars, 17, and 
M», are observed at the same time, two 

small circles are determined on each of 

which the point of observation must le. 

The poles of these small circles are the substellar points, M1 and M2, 

of M, and Mz, respectively (see Figure 170). The latitudes of M;, and 

Mz are equal to the declinations of M; and Mz, respectively. The longi- 

tudes of M1 and Mz are essentially the Greenwich hour angles of the 

stars at the instant of observation.* 

Figure 170 

The Greenwich ‘hour angle of any heavenly body at any time is readily 

obtainable from either the Nautical Almanac or the Air Almanac. The 

* If the Greenwich hour angle of the star is less than 12? or 180°, the longitude of the sub- 

stellar point is this hour angle west. If the Greenwich hour angle of the star is greater 

than 12% or 180°, the longitude of the substellar point is 24 or 360° minus this hour angle 

east, 
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excerpts from the latter in Appendix IV are sufficient to provide this infor- 

mation at any time on August 1, 1943. Note that in the case of a fixed star 

the Greenwich hour angle is found by combining the variable Greenwich 

hour angle of the vernal equinox, T, with the constant sidereal hour angle 

of the star. 

Finally, the polar distances, in nautical miles, of the two small circles are 

equal to the observed co-altitudes, in minutes, of the corresponding stars. 

Unfortunately, the determination of the latitudes and longitudes of 

the points of intersection of these two small circles about 17; and M2 

(one of these points of intersection being the point of observation) is 

neither direct nor simple. Since no chart exists for which the scale of 

distances from any given point is the same in all directions, these small 

circles cannot be drawn on a chart. On a Mercator chart the correct 

intersection of these two circles could be approximated by the additional 

observation of the azimuths of the stars M@, and M2.* Then, using the 

scales proper for these approximate azimuth directions from M; and Mz, 

the navigator could scale off the co-altitude distances in these general 

directions to give an approximate point of intersection as the point of 

observation. But, except in the case of very high altitudes — which are 

to be avoided as being difficult to obtain accurately — the co-altitude 

distances to be scaled off from M, and M> would be so large that any 

chart large enough for sufficiently accurate graphical results would be 

impractically cumbersome.t One of the special tabulation methods of 

navigation provides very special graphs from which the positions of the 

points of intersection of these small circles can be read.t Such special 

tables are particularly useful in air navigation where the need for rapid- 

ity of calculation frequently warrants a slight sacrifice in accuracy. 

Otherwise, that is, universally at sea and to some extent in the air, the 

method described above is modified to give the line of position method 
described below. 

When the complete absence of any information as to a navigator’s 

position is replaced by a reasonably accurately estimated position, this 

estimated position can be corrected to give the actual position to a high 

degree of accuracy by a modification of the more complicated method 

described above, which is necessary when no previous information is 
available concerning the position of the point of observation. At sea 
the record of courses steered and speeds maintained (corrected for wind 

* At sea this is obtainable within half a degree or so by means of an azimuth circle (see 
Appendix IIT). In the air this is not practical. 

t+ Since observed altitudes are generally between 20° and 70°, the corresponding distances 
to be scaled off from the substellar points would lie between 4200 and 1200 nautical miles. 

t Star Altitude Curves by Lieutenant Commander P. V. H. Weems. 
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and current) from the previous point of definitely known position is suf- 
ficient to give an approximate position known as a dead reckoning posi- 
tion. Correcting this dead reckoning position to give the actual position 
involves the solution of an astronomical spherical triangle, on the basis 
of which a simple graphical procedure will give the actual position on a 
Mercator chart. 
Any program for finding the actual position from an assumed position 

by means of altitude observations would naturally suggest investigating 
the differences in a star’s altitudes from two different points of observa- 
tion. The following corollary to the 

above theorem is therefore pertinent: 

CoRoLuaRy 1: The difference between 

the nautical mile distances of two points 

of observation from the instantaneous sub- 

stellar point of a given star is equal to the 

difference, in minutes of arc, between the 

instantaneously observed altitudes of this 

star at these two points, the point at which 

the altitude is greater being the nearer to the 

substellar point. 

Applying the above theorem to Figure Ficure 171 
171 where U and V are any two points 
of observation of the star M whose substellar point is instantaneously at 

M, and where hy and hy are the altitudes of M as observed at U and V, 
respectively, we have 

MV (in nautical miles) = (90° — hy) in minutes. 

M U (in nautical miles) = (90° — hy) in minutes. 

MV-—MU (in nautical miles) = (hy — hy) in minutes, 

The following is an obvious specialization of the above corollary: 
Corouuary 2: The distance in nautical miles between two points on the 

same great circle through the instantaneous substellar point of a star is equal to 
the difference in minutes between the instantaneous altitudes of the star as ob- 
served from the two points, the point of the larger altitude being the nearer to 
the substellar point. 

The application of Corollary 1 is seen to be immediate in the following 

procedure for finding the actual position as a correction on a dead reckon- 

ing position: 
1. The altitude of a certain star is observed with a sextant and the 

chronometer time of observation is noted. This observed altitude is 

labeled h, and the corresponding point of observation, that is, the actual 

position, is labeled A,. ; 

2. For this chronometer time of observation the dead reckoning posi- 
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Figure 172 Fiaure 173 

tion is calculated from the record of the ship’s run from the last definitely 

known position. This information and the star’s declination — tabu- 

lated in an almanac — provide three parts of an astronomical spherical 

triangle. In Figure 172 the known parts of such a triangle are shown 

encircled. This triangle is then solved for h,, the computed altitude of 

the star, which altitude therefore applies to the dead reckoning position, 

labeled A,. The azimuth, A,, of the star is also computed for this 

point A,. 
3. The points A, and A, can now replace the points U and V in 

Corollary 1 with the known restriction that A, lies inside a relatively 

very small “‘small’’ circle about A,. (See Figure 173.) Without loss of 

generality in the argument A, is pictured as nearer M than is A,. 

The scale is greatly exaggerated to make the small circle about A, dis- 

tinct, since A, is assumed to be within about 20 miles of A,, whereas 

the distances of A, and A, from M are, in general, between 1200 and 

4200 miles. Consequently, it is wholly reasonable to replace the small- 

circle are which is within the small circle about A, and on which A, 

must lie by the great-circle are which is tangent to this small-circle arc 
at its midpoint. 

4. Accordingly, following the solution of the astronomical spherical 
triangle, the procedure on a Mercator chart * is as follows: 

a. The dead reckoning position of A, is plotted. (See Figure 174.) 

b. Through A, a line is drawn in the direction of M as given by the 
computed azimuth of M, 

c. At B, on this line and at a scale distance from A, equal (in 
nautical miles) to the numerical value (in minutes) of the difference 
(ho-h,), away from or toward M according as h, is less or greater than 

* A plane chart on which lines of constant direction on a sphere are represented as 
straight lines and on which angles are preserved. 
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Ficure 174 Figure 175 

h,, a perpendicular line is drawn on which the point A,, of the actual 

position, must lie. This perpendicular line is accordingly called a 
line of position of the point of observation. 

5. By repeating the above procedure for another star of markedly 

different azimuth the point A, will be determined by the intersection of 

two lines of position. In practice this procedure is generally followed for 

three stars M,, Me, and M; so that A, is “‘fixed”’ by being shown to lie 

in a small triangle formed by three lines of position (see the shaded 

triangle in Figure 175). 

The practicability of this line of position method of determining posi- 

tion as a correction on a dead reckoning position lies in the relatively 

short distances involved. Whereas the substellar point of an observed 

star is generally from one to four thousand miles away, the dead reckon- 

ing position is probably, in the cases in which this method is justified, 

less than twenty miles away.* The fact that the simple Mercator chart 

procedure of this line of position method must be preceded by the solu- 

tion of at least two astronomical spherical triangles makes this method 

a direct application of spherical trigonometry. 

55. Solutions of Celestial Problems 

The procedure to be followed in solving a celestial problem is as 

follows: 

1. Draw a large sketch of the celestial sphere. If the data are given 

in terms of a particular observer, place his zenith at the top of the 

meridian in the plane of the paper. If the observer’s latitude is given, 

show the poles and the equinoctial to suggest the value of this latitude. 

Hither the east or the west horizon can be faced outward according to the 

side of the zenith on which the elevated pole — that corresponding to the 

observer’s latitude — is placed. If possible, the choice should be made 

* When the assumed position has been reckoned from a definitely known position of 

several days past, this method may well give the actual position as 50 to 100 miles away 

from the assumed position. In such cases the method can be reapplied by using in place of 

the originally assumed position the position just computed. 
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so that any heavenly body mentioned in the problem will be shown out- 

ward from the paper. 

2. Show on this celestial 
sphere any celestial bodies 
mentioned and in the ap- 

proximate position given. 

Show any co-ordinates 

which are given or which 

are obtained from an alma- 

nac. 
3. Resolve the problem 

into the solution of some 
spherical triangle or tri- 

angles. This will frequently 

involveafundamental PZM 

FicurReE 176 

celestial triangle. See, for example, the triangle PyZM in Figure 176. 

Redraw this spherical triangle (or triangles) disconnected from the 

sphere, drawing a circle around the labels for the known parts. 

4, Solve this spherical triangle, or these spherical triangles, by the 

method of reduction to right spherical triangles discussed in Chapters 2 
and 3. Reduce the answers to the form required. 

Exampte 15: On a certain 
day for which the Nautical Al- 
manac gives the sun’s declina- 
tion as 15° 27’ 24” South, a 
navigator observes the altitude 
of the sun with his sextant as 
the sun nears the navigator’s 
meridian. He notes that at 
the instant the sun’s altitude 
ceases increasing and begins 
to decrease, the chronometer 
indicates 09" 53” 20° G.C.T., 
the greatest altitude attained 
(at this instant) being 65° 34’ 
40” above the northern hori- 

2 d=15°27/ 24" 

h=65°34’40" 

Ficure 177 

zon. Whatis the latitude and longitude of the navigator? (See Figure 177.) 
Since the sun is south of the equator and is observed north of the observer’s 

zenith, the observer must be in the southern hemisphere. 

From Figure 177, h — d= co lat. 

lat. = 90 -h+d Se = {39° 52’ 44” §, 
long. = 11°59" 60* — 095320 = |31° 40’ E. 

EXAMPLE 16: The latitude of Annapolis, Maryland, is 38° 59’ N. Ona 
particular sunny winter day when the declination of the sun (as given by 



55. SOLUTIONS OF CELESTIAL PROBLEMS 159 

Zi 
Q ; 

Ficure 178 

the Nautical Almanac) is 15° South, the sun appears to rise directly at the 
foot of East Street, and one hour later the telegraph poles on Main Street 
cast shadows parallel with the curb. In what directions do these two streets 
run from State Circle and Church Circle, respectively? (See Figure 178.) 

cos M,N= sec 38° 59’ cos 105° cos 105° = cos M,N cos 38° 59’ 

cos t;’ = tan 38° 59’ cot 105° 

_ t= 11* 59” 60° — th’ (or 179° 59’ 60” — th’) 

_ te= ti, — 1°00” 00+ (or t; — 15° 00’ 00’’) 

sin p = sin 105° sin f, (same quadrant as te) 

tan ¢; = tan 105° cos te cos t2 = cot 105° tan gi 

PF SM Y oF 2 = $1 — 51°01’ 

cot AD = sin $2 cot p sin ¢2 = tan p cot A, 

38° 59’ lsec 10.10940/tan 9.90811 
105° i cos (—) 9.41300 2 cot(—) 9.42805 J sin 9.98494 I tan (—) 10.57195 

M,N=109°26'56” | 1 cos (—) 9.52240 ie 

oe, 102° 31’ 26” ? cos (—) 9.33616 
+ 1 6* 50" 06« ‘ 

ie 09” 54s 
ty = 

77° 28’ 34” 

4h 09m 542 

= 62° 28’ 34” lsin 9.94784 1 cos 9.66475 

p = 58° 56’ 16” l cot 9.77984 Zsin 9.93278 

1 = 120° 06’ 22” 1 tan (—) 10.23670 

2 = 69° 05’ 22” L sin 9.97041 

* = 60° 38’06” =| Ll cot 9.75025 

.. (a) East Street runs 19° 26’ 56” South of East 

(b) Main Street runs 29° 21’ 54”” South of East. 
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Exampien 17: On August 1, 1943, soon after sunset when the horizon and 

brighter stars were visible, a navigator, by means of a sextant, observed 

the altitude of the star Altair. When duly corrected for height of eye and 

instrument error, this observed altitude was found to be 35° 15’ 40”. The 

Greenwich time (G.C.T.) of this observation — obtained from the watch 

time of the instant of observation, the difference between watch time and 

chronometer time, and the chronometer error — was computed to be 2 Ba" 

18°. By dead reckoning the ship’s position was assumed to be lat. 52° 30’ .N., 

long. 31° 15’ W. Compute the direction and distance of the ship’s line of 

position from this assumed dead reckoning position and illustrate graphi- 

cally. 

The following abbreviations will be used: 

G.C.T. Greenwich civil time or Greenwich time. 
G.H.A. Greenwich hour angle. 
S.H.A. Sidereal hour angle. 
L.H.A. Local] hour angle. 
A.A.A. American Air Almanac. See references to Appendix IV. 

lat. Latitude. 
long. Longitude. 

d Declination 
A,. Azimuth. 

t Time angle. This equals either the hour angle or 360° minus the 
hour angle, whichever is the smaller. 

h, Computed altitude. 
h, Observed altitude. 
Y The vernal equinox or the first point of Aries. 

Given: Date: August 1, 1943. GC.T,, = 2204 33" 187 
lat: 702-00 Ne Star: Altair. 

longs —o melo We Ne = omnes) ce 

Reduction of data to give three parts of an astronomical triangle: 

LG HAs obs Piako2" 3% = 287° 09’ (See A.A.A. Aug. 1, 1943.) 
2. Correction for 03” 18° = 00° 50’ (See A.A.A., Interpolation 

for G.H.A.) 
3. G.H.A. of T at 22" 30" 18° = 287° 50’ 
4, S.H.A. of Altair ss (ee (hy (See A.A.A., Stars.) 

5. G.H.A. of Altair = 350° 59’ 
6. long. (W.) = hal ko 

7. L.H.A. of Altair = 319° 44’ 
8. t for star in eastern sky = 40° 16’ 
9. d of Altair = 08° 43’ N. (See A.A.A. Stars.) 

10. lat. = §2° 30’ N. 

And 8, 9, and 10 are either known parts or known complements of parts of 
the astronomical triangle to be solved for h, and A,. (See Figure 179.) 
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FicureE 179 

Solution of the Astronomical Triangle: 

Figure 179 indicates that the triangle is of thes.a.s. type. Since the un- 
known angle at M is not required, the altitude is drawn from this vertex. 

sin p = sin tcos d 

tan ¢; = cos t cot d cos t = cot (co d) tan ¢i 

as on if d2 = o1 — co lat. 

sin h, = cos p cos ¢o 

cot A,’ = cot psin do sin ¢» = tan p cot A, 

= 40° 1600” Jsin 9.81047 Icos 9.88255 

= 08° 43’ 00” Jcos9.99495 I cot 10.81440 

39° 42’ 32” Isin 9.80542 —— _ !cos 9.88609 Icot 10.08067 
go: = 78° 38’ 20” ltan 10.69695 

lat. = 52° 30’ 00” 
co lat. = 37° 30’ 00” 

gg, SF 

3S Il 

go = 41° 08’ 20” lcos 9.87686 JUsin 9.81815 

Tea —1o0- 24520" lsin 9.76295 

As) = 51° 36’ 54” lcot 9.89882 

he = 35° 15°40" 

h, — h, = 00° 08’ 40” 
= 83 n. mi: 

Therefore the ship’s line of po- 
sition is 83 nautical miles from the 
assumed position, the 83 nautical 
miles being measured on a line 
bearing 51° 36’ 54” west of north, 
that is, away from the star with re- 
spect to the assumed position. (See 

Figure 180.) Ficure 180 
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56. Problems on Chapter 5 

Note: The excerpts from the almanacs given in Appendix IV are to be used 

in many of the problems in this list. 

1. For the following data find the unknown quantities: 

Altitude Hori- Ele- Declination Latitude Hour Angle Azimuth 

(h) zon vated (d) (lat.) (H.A. or t) (A,) 

Pole 

(a) 29°18’30” East 14°10’20’"S. 28°10’30” N 
(6) 32°08’30” North 52°08’10” N. 20°27 * 18" 

(ec) 61°10’15” West North 08°15’22” S. N. 142°25’ W. 

(@) 41°50’00” West 07°42’40” N. 19°05’20” S. 

(e) 20°32’40” N. 29°50’40”S.  3*04"10 

(7) 19°50’20” S. 32°42’30” N. 3405"23 
(g) 65°03’30” South 57°08’40” 8. 22*08"20# 
(A) 06°42’10’"S. 48°15’40”S. 20*12708+ 

2. Find the direction and distance of the line of position from the assumed 
dead reckoning position for each of the following sets of data in which the 
Greenwich civil time of observation is that for August 1, 1948. Illustrate your 
answer graphically. 

Assumed Assumed Aug. 1, 1943 Star Observed 
latitude Longitude GOT: Observed Altitude 
(lat) (long.) (G.C.T.) ) 

(a) 12° 45'S. 152° 30’ W. 16* OS" 19s Fomalhaut 36° 27° 20"" 

(6) 22° 30’ N. 134° 45’ E. 20* 02 O08: Markab 51° 55" 207 

(ec) 18° 0 Ss. 61° 3 30 E. 134 33" 22: Antares 5S: 06o0 a 

(d) 54°30’ N. 28° 45’ W. 22* 12” 47: Ruchbah 35054509 

(e) 09° 00’ N. 42°§ oy’ WwW, 435" 12: Nunki 28° 15’ 00” 

(f) 32°30'8. 7S° 58’ W. vA 40™ 14s Aldebaran 36° 45’ 20” 
(g) 35 0 as? N. 18° 30’ E. 03* 32” 49s Rigel 20° 28’ 00” 

(A) 58° 30'S. 63° 14’ W. 11* 21” 40s Acrux 33d 

3. Find the zone time — without war time or daylight time — in each of the 
following places on August 1, 1943, at the instant when a vertical post casts a 
shadow in the given direction. (Noge: If your first answer shows that the sun’s 
assumed declination was in error, make the necessary changes in your solution.) 

(a) Brunswick, Me. (lat. 48° 55’ N., long. 69° 59’ W.); 72° 30’ east of 
north. 

(0) Brockport, N.Y. (lat. 48° 13’ N., long. 77° 57’ W.); 58° 15’ west of 
north. 

(c) Babylon, L.I. (lat. 40° 40’ N., long. 73° 20’ W.); 37° 30’ east of north, 

4. In each of the following cases find, by means of a solution of a spherical 
triangle, the local apparent time of sunrise and the direction of the shadow cast 
by a vertical post at sunrise. 

(Note that the motor-vehicle laws of many states set the times of turning on 
and off headlights as one-half hour after sunset and one-half hour before sunrise, 
respectively.) 
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Place Latitude Sun's Declination 
(a) Toledo, Ohio 41° 40’ N. 05° 14’ 10” N. 
(6) Toronto, Canada 43° 38’ N. 18352) 45178; 
(c) Fairbanks, Alaska 64° 44’ N. 20° 20’ 00” N. 
(d) Mexico City, Mexico 19° 00’ N. 22° 00’ 20” N. 
(e) Buenos Aires, Argentina 34° 35’ 8. 21° 52' 10" S, 
(f) Auckland, New Zealand 36° 52’S. 12° 22’ 40” N. 
(g) Quito, Ecuador 00° 10'S. 00° 10’ 00S. 
(h) Hammerfest, Norway 70° 38’ N. 17724520" 8. 
(7) Murmansk, Russia 68° 50’ N. 1831423028: 
(j) Manchester, England 53° 30’ N. 22-107 15/EN. 

5. In each case of problem 4 find the direction of the shadow cast by a vertical 
post at 2:15 P.M. local apparent time. 

6. In each of the following cases a navigator assumes his latitude and ob- 
serves the altitude of a star at the given Greenwich civil time of August 1, 1943, 
as computed from a chronometer, in order to compute his longitude. Find the 
navigator’s longitude. (Note: This method is justifiable even when the latitude 
is somewhat in doubt, if the star whose altitude is observed is nearly due east 
or due west. See the Method of Lines of Position, however, for the more modern 
practice.) 

Latitude of Star Observed Horizon Aug. 1, 1943 
Observation Observed Altitude Used G.Cale 

(a) 38° 27’ 30” N. Vega 53° 10’ 30” Eastern 21% 31™ 10° 
(b) 15° 05’ 00” S. Enif 40° 08’ 40” Western 174 08™ 12s 

(QA EE Alnilam 23° 00’ 30” Eastern 134 56” 38: 

7. A ship in latitude L (north) sails continuously on a course 270° at & knots. 
Let R be the radius of the earth in nautical miles and let the (northern) de- 
clination of the sun be d (assumed constant for the day). Show that the number 
of hours, 7’, of sunlight which the ship experiences on this day is given by 

2 wR (180° — t’) cos L 

~. 15 rR cos L — 180 k’ 

8. Derive an analogous expression for J’ in the above problem, if the course is 
90° and the declination, d, is southern. 

9. On March 11, 1943, a surveyor in latitude 38° 11’ 45” N., long. 110° 05’ 
20’ W. wishes to locate the meridian by sighting on Polaris at.elongation, 
setting a stake in this direction, and then turning his transit through a com- 
puted angle from the line of this stake to true north. 

(a) At what zone time should the surveyor be prepared to sight on Polaris? 
Will the elongation be eastern or western? 

(b) Using the latitude of the point of observation and the declination of 
Polaris, find the direction of true north with respect to the direction of the 
first stake from the transit. (See Nautical Almanac table for Polaris in 

where cos t/= tan L tan d 

Appendix IV.) 

10. Solve problem 9 for the following sets of data: 

Date Latitude Longitude 

(a) Nov. 5, 1943 De NT QO ON, 82° 15’ 30” E. 

(b) Aug. 8, 1943 34° 24’ 45”" N. 63° 48’ 10” W. 
(c) Dec. 1, 1943 58° 19’ 20” N, 133° 24’ 15” W, 
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11. In each of the following cases a navigator assumes his longitude and 

observes the altitude of a star at a given Greenwich civil time of August 1, 1943, 

as computed from a chronometer, in order to compute his latitude. F ind the 

navigator’s latitude. (Note: This method is justifiable even when the longitude 

is somewhat in doubt, if the star whose altitude is observed is near the ob- 

server’s meridian. The method of lines of position, in which both latitude and 

longitude are assumed, is more commonly used now.) 

Longitude of Star Observed Elevated Aug. 1, 1943 
Observation Observed Altitude Pole GCAL 

(a) 15°03’00” W. Mizar 22° 1400” North 04% 31” 13: 

(iQ) POE Gy BU Np Peacock 23° 06’ 30” South 04442 13s 
(c) 174° 48’00’” W: Vega 66° 03’ 30” North 08% 05" 25 

12. Prove that for any locality not on the equator the local apparent time of 
sunrise on the day of an equinox is halfway between the times of sunrise at 
the solstices. What is the situation for localities on the equator? 

13. What is the latitude of a locality for which the earliest local apparent 
time of sunrise is 23 hours earlier than the time of latest sunrise? Use 23° 27’ 
as the maximum numerical value of sun’s declination. 

14. By means of a large figure of the celestial sphere show that for any point 
‘Snside” the Arctic Circle (that is, north of this circle) there will be days on which 
the sun will not set. (The co-latitude of the Arctic Circle is equal to the angle 
between the ecliptic and the equinoctial, or 23° 27’.) 

15. Boston, Mass. (lat. 42° 15’ N., long. 71° 00’ W.), New York, N.Y. (lat. 
40° 40’ N., long. 73° 50’ W.), and Charleston, S.C. (lat. 32° 47’ N., long. 79° 
57’ W.) all have the same legal time. Assume this legal time is zone time (not 
war time nor daylight time). State the time order of occurrence of (1) apparent 
noon, (2) mean solar noon, and (3) legal or clock time noon at each of these 
three cities on August 1, 1943. 

16. A surveyor on land in lat. 09° 20’ 12’”’ N.; long. 08° 37’ 14’” W. wishes to 
lay off a direction bearing 155° 18’ 10” west of north from a certain point on 
the night of August 1, 1943. Because local hills obscure Polaris, he proposes 
to do this by setting up his transit at this point and taking a sight on the star 
Antares at the instant when this star bears in this desired direction. At what 
Greenwich time and at what zone time should he make this observation? 

17. At what mean solar time in San Francisco (lat. 37° 45’ N.; long. 122° 
27’ W.) is the sidereal time on August 1, 1943, 05* 37™ 40«? 

18. Find the sun’s right ascension, declination, and local hour angle on 
August 1, 1948, at 10:20 A.M. zone time in New York (lat. 40° 40’ N.; long. 
73° 50’ W.). 

19. If on the afternoon of August 1, 1943, a surveyor in lat. 32° 47’ N. and 
in the sixth time zone west of Greenwich measures the altitude of the sun with 
a transit and finds it to be 51° 42’, through what horizontal angle must he rotate 
the transit telescope to set a stake on the meridian due south? 

20. By means of a solution of a spherical triangle compute the L.A.T. (local 
apparent time), the L.M.T. (local mean time), and the W.T. (watch time) of 
sunrise at the following places on August 1, 1948. Compare your results with 
the times of sunrise as tabulated in the Air Almanac for certain latitudes on 
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this day. (Note: Use for the sun’s declination a value at a reasonable hour of 
G.C.T. If the declination at the computed hour is different from this, correct 
your computations accordingly.) 

(a) Reykjavik, Ice. (lat. 64° 04’ N., long. 21° 58’ W.). 
(6) Cape Horn (lat. 55° 59’ S., long. 67° 16’ W.). 
(c) Rochester, N.Y. (lat. 43° 08’ N., long. 77° 35’ W.). 

21. Find the terrestrial latitude and longitude of the substellar point of each 
of the following stars at the given instant of G.C.T. on August 1, 1943. By 
means of a map relate these points to some large city: 

(a) Deneb; 06* 17” 35s. 
(6) Markab; 18* 24” 02s, 
(c) Kaus Australis; 014 39” 04», 

22. What large city is very nearly the substellar point of Dschubba on August 1, 
1943, at 224 11” 46° G.C.T.? If the altitude of Dschubba, bearing northwest, 
was observed to be 82° at this instant, approximately where was the point of 
observation? 

23. Compute the zone time of upper transit of the following stars at the 
given places on August 1, 1943: 

(a) Antares; Manila (lat. 14° 35’ N., long. 121° 00’ E.). 
(b) Alpheratz; Washington, D.C. (lat. 38° 55’ N., long. 77° 00’ E.). 

24. (a) A casual observer in northern latitude is puzzled to note that the sun 
continues to rise later by his watch for several days after the winter solstice. 
Explain how this can be. 

(b) Using the data below (taken from the Nautical Almanac) compute, by 
means of solutions of spherical triangles, the watch times of sunrise at 
Chicago, Ill. (lat. 41° 50’ N., long. 87° 40’ W.) on December 22, 1943, the 
winter solstice, and on December 31, 1943. 

Dec. 22, 1943 Dec. 81, 1943 

Sumsimean dechination.!:. 72020 ).0.0... PEDO IBN Hl isha) PASS fsb 
Equation of Time for 0* G.C.T......... + 1™ 56° .6 — 2” 31° .2 
Hourly difference in Equation of Time. . — 1*.2 —1°.2 

(Note: Equation of Time = Apparent Time — Mean Time.) 

25. Sundials 
(a) Show why a sundial cannot, in general, be made from a thin vertical 

stick mounted on a horizontal board. What celestial co-ordinate of the sun 
does the shadow of such a stick indicate? What co-ordinate of the sun 
should a shadow indicate to constitute a sundial? Are there points on the 
earth’s surface at which a vertical stick on a horizontal board will constitute 

asundial? Discuss the shadows cast by a vertical stick on a horizontal board 

at the equator on a day of an equinox. 

(b) Show that a sundial can be constructed if the thin stick, called the 

“style” or “gnomon,” which is mounted perpendicularly to the board (or 

“face” of the sundial), is pointed toward the elevated celestial pole. (See 

Figure 181.) Note that, although the center of the celestial sphere (that is, 

the earth’s center) moves by nearly 200 million miles a year, this displace- 

ment is infinitesimal in comparison with the infinite radius of the celestial 

sphere. Hence, any displacement of the center of the celestial sphere to 

place it at some point of observation on the earth’s surface will be indeed 
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Figure 181 

inconsequential. This type of sundial is called an equinoctial sundial, as 
its face is in the plane of the equinoctial when its style is correctly pointed to 
the elevated pole. What kind of time will be indicated by this sundial? 
Describe precisely how the rays which are on the face of the dial and emanate 
from the foot of the style must be drawn. If an equinoctial sundial is cor- 
rectly set up, that is, with the style parallel to the earth’s axis, will it be 
usable at any point on the earth’s surface? 

(c) Most sundials have either horizontal faces or vertical faces which face 
toward a cardinal point of the compass. The former are called horizontal 
sundials and the latter vertical sundials. To construct a horizontal sundial, 
let a plane intersect the face of an equinoctial sundial along the east-west 
line of this face and at an angle with the style equal to the latitude of the 
wabe in question. (See Figure 182.) This plane will then be horizontal and 
will be the face of a horizontal sundial. In terms of the latitude of the wabe 
and by means of Figure 182 derive the formula for the angle @, on the face of 
a horizontal sundial between the line marking apparent noon and the line 
marking hours before or after apparent noon. What can be said about the 
limitations of a horizontal sundial with respect to its usability at different 
points on the earth’s surface? Compare the horizontal sundial with the 
equinoctial dial in this respect. 

(d) By means of a figure similar to Figure 182 derive the formula for mark- 
ing off the hour lines on a vertical sundial facing south for northern latitudes 
or facing north for southern latitudes. To what pole will the style of such 
vertical sundials point? Comment on the year-around usability of such a 
vertical sundial placed on the wall of a building. Compare such a vertical 
sundial with a horizontal sundial in this respect. 
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(e) Imagine that a window in an Oxford College building looks out upon 
a vertical outside wall across a court. Suppose this vertical wall faces 20° 
west of south, and suppose a vertical sundial is to be placed on this wall so 
that the time of day can be read from an opposite window. Compute the 
angle from the vertical on the face of this dial at which the five o’clock (P.M.) 
shadow line must be drawn. The latitude of Oxford is 51° 45’ N. 
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Geometrical Description and Classification 
of Ambiguous Solutions 

1. The Program 

In the text proper, only right ambiguous spherical triangles have 

been described geometrically. (See section 16.) In the case of oblique 

ambiguous spherical triangles we were content to do three things: first, 

to recognize whether or not a given triangle to be solved was ambiguous *; 

second, to know in general how a constructed altitude was to be placed 

with respect to the possible double solutions; and third, to admit no 

solution, one solution, or two solutions for the particular problem at hand 

entirely on the basis of the numerical computations.{ In what follows 

here the geometrical description of ambiguous solutions will be extended 

to oblique spherical triangles. This is a much more difficult program 

than the geometrical description of the right ambiguous triangles. Sev- 

eral general theorems will first be developed. As a result of the geomet- 

rical description of these ambiguous oblique spherical triangles, the 

types of solution possible in each of the two general cases will be classified 

on the basis of the values of one of the three given parts relative to the 

values of another given part and the computed value of the altitude 

needed for the solution of the particular triangle at hand. 

2. Ambiguous Right Spherical Triangles: Geometrical Description 

and Classification of Solutions. 

For the sake of completeness the results of section 16 are listed here 

without explanation: 

DerFinition: Ambiguous right spherical triangles are those for which 

the data, beside the assumed right angle, comprise a leg and opposite angle. 

(See sections 16 and 16 a.) 

* The given parts include a pair of opposite parts. 

+ The altitude must lie inside one and outside the other triangle in the a.s.s. case and 

either inside both or outside both triangles in the s.a.a. case. 

t Log sine and log cosine must not be positive; log secant and log cosecant must not be 

negative; parts of triangles must be positive and less than 180°. 
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GeromerricaL Description: In the 

case of double solutions the two solution 

triangles make up a lune of angle equal 

to the given angle, and each vertex of 

this lune is a vertex of one of the solu- 

tion triangles. In the case of one solu- 

tion the given side lies along the polar of 

the vertices of the lune and must, there- 

fore, be a special right spherical triangle 

in which the two opposite parts given 

must jhave like values. (See Figure Ficure 183 

coe ieoe 
CLASSIFICATION: An ambiguous right spherical triangle will have: 

1. Two solutions, if the given side is in the same quadrant as the given 

angle opposite, and if the value of the given side is farther from 90° than 

is the value of the given opposite angle; 

2. One solution, if the value of the given side is exactly equal to the 
value of the given opposite angle; 

3. No solution, if the value of the given side is nearer to 90° than is 
the value of the given opposite angle. 

3. The A.S.S. Case: Geometrical Description and Classification of 
Solutions 

DEFINITION: A great circular are will be said to lie within a spherical 

angle, when the extremities of the arc lie on the sides of the angle and at dis- 
tances less than 180° from the vertex of the angle. 

In Figure 184 the are AD lies within the spherical angle C, and the arc 
AD?’ of the great circle of AD lies within the angle C’. 

Figure 184 Figure 185 
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Convention concerning primed letters: A pair of identical letters, one 
unprimed and the other primed, will indicate either (1) aGronenly 
opposite points on the sphere when the letters (capitals) represent points, 
or (2) supplementary values when the letters (capitals for spherical angles, 
small letters for great-circular hai represent angular values. In the 
case of the perpendiculars p and p’, but not necessarily in any other 
cases, the primed value will always indicate the larger of the two sup- 
plementary values. 

The following describes the procedure in investigating a.s.s. ambig- 
uous triangles: 

1. The lune of the given angle, C, is drawn and the given side, b, ad- 

jacent to C, is marked off from the vertex C of the lune and on one of its 
sides, to fix the vertex A. (See Figure 185.) 

2. The variation in the length of the are from A to a point B on the 

other side of the lune is then investigated as B moves continuously 

from C to C’. Since the perpendicular arc from A to the other side of 

the lune has an extreme value for all such ares, it should be sketched in, 

as well as the arc b or b’, whichever lies within angle C. The Principle of 

Continuous Variation of these ares, stated below, will then indicate be- 

tween what limits these arcs lie, depending on the positions of B. 

3. The results of (2) will then show the limits on the possible values 

of the second given side, c, between which limits this second given side, 

together with the other two given parts, will form no triangle, one 

triangle, or two triangles. These limits on c will be found to depend on 

the magnitude of the first given side and the magnitude of the altitude 

which lies within the given angle C. This altitude is immediately de- 

termined from the given values of C and b, by Napier’s Rules. 

PRINCIPLE OF CONTINUOUS VARIATION IN ARc LENGTH FROM A GIVEN 

Point To A GIveN GREAT CrircLeE: The variation in the length of a great- 

circular arc between a given point and a p 

continuously moving point on a given great 

circle is continuous and lies between p and 

p’, the lengths of the perpendiculars from 

the given point to the given great circle. 

Let A and a in Figure 186 be the given 
point and great circle, respectively. The 

principle is obvious for A ona. Likewise, B. 

if A is a pole of a, the principle follows im- 

mediately, since, by Introduction, 6 e¢, all 

the arcs are quadrants and the variation 

is continuous because constant. If A is 

not a pole of a, let p be one of the two FiaureE 186 
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perpendiculars from A to a, and letitsfoot be C. Then, as the point B 

moves continuously along a 

cos AB = cos p cos BC, by Napier’s Rules. 

AB = cos [(cos p) cos BC]. 

Hence, AB is a continuous function of a continuous argument. 

The a.s.s. ambiguous triangles can best be investigated by treating 

each of four general cases individually: 

1. C acute, b acute. 

2. C acute, 6 obtuse. 

3. C obtuse, b acute. 

4. C obtuse, b obtuse. 

The two special cases: 

5. C = 90° 
6. C ¥ 90°, b = 90°, 

are easily disposed of. 
The investigations for all types are entirely similar to one another. 

The investigation for the general type (3) is given below. A concise 

statement of classification for all types follows. 

3. C obtuse, b acute: 

By Napier’s Corollary 1 (see Figure 187), the perpendicular within C 
isp’. Let the foot of this perpendicular be D’.. By Napier’s Corollary 3 a, 
p’ must lie inside one and outside the other of any possible pair of solutions 
arising from one given value of c. 

As the vertex B moves continuously 
from C toward C’ (and so that c lies 
within the angle C), the side c must con- 
tinuously increase from the value of 6 
(vertex B at C) to that of p’ (vertex B at 
D’) and then continuously decrease from 
the value of p’ to that of b’ (vertex B at 
C’), by Napier’s Corollary 3 and the 
Principle of Continuous Variation. 

By the fact that 6 is given acute and 
by Napier’s Corollary 3, p’ >b’ > b. Con- 
sequently, by Napier’s Corollary 3 and 
by the fact that a continuous function Figure 187 
must take on all values between any two 
that it takes on, the value of c must pass through that of 6’ as B moves from 
C to D’. Let the point between C and D’ at which c equals b’ be EF. 

Then, for B between E and C’, c takes on every value between 0’ and p’, 
once for B between E and D’ and once for B between D’ and C’. Hence, 
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for c of any value between b and 0’ only one solution is possible (B between C 
and £); for c of any value between b’ and p’ there are two solutions possible 
(the vertices B, and B, straddling D’); for c equal to either b’ or p’ there will 
be but one solution possible (B at E or D’, respectively) and the unique 
solution in the latter case will be a right triangle; for c any other value there 
will be no solution possible. 

The results for this type can be summarized: 

1. If the given value of c is between b’ and p’, there are two solutions. 
The perpendicular, p’, lies inside one solution triangle and outside the 
other. 

2. If the given value of c either (a) equals an end value of the interval 

described above for double solutions or (0) lies between b and b’, there is 
one and only one solution. 

3. If the given c has any other value, there is no solution. 

By investigating the other types of a.s.s. Ambiguous Triangles the 

student can readily verify the following summary: 

CLASSIFICATION OF THE KINDS OF SOLUTIONS IN THE AMBIGUOUS 
A.S.S. Casz: Let the given angle and side adjacent be C and 8, respec- 
tively. By Napier’s Rules compute the perpendicular, p or p’, from A 

and lying within angle C. Let {b} be either b or b’, whichever is in the 

quadrant of the evaluated perpendicular. Then 

1. If the given value of c lies between the value of the perpendicular 

and {b} , there are two solutions. ‘The altitude from A lies inside one 

and outside the other solution triangle. 

2. If the given value of ¢ either (a) equals an end value of the interval 

described above for possible double solutions or (6) lies in the interval 

bounded by b and b’, there is one and only one solution. This single 

solution may be either a right or an isosceles triangle but need not be 

either. 
3. If the given side c has any other value, there is no solution. 

4. The S.A.A. Case: Geometrical Description and Classification of 

Solutions 

The geometric representation and algebraic classification of ambiguous 

solutions are much more difficult in the s.a.a. case than in the a.s.s. case. 

This may well be due to the absence of a plane analogue for the spherical 

s.a.a. case. The derivations of the classification in the s.a.a. case require 

several new theorems which are derived below. 

TurorEM 1: If a particular s.a.a. case has a double solution, then the 

altitude necessary for the right-triangle-solution will lie inside or outside 

both solution triangles according as the two given angles are in the same 

or different quadrants. 
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Fiegure 188 

The statement and derivation of this theorem have been given in section 
27. The derivation depends solely on Napier’s Corollary 1, as Figure 188 

indicates. 

DeFtnition: A great-circular are of angular measure equal to 90° ts 

a quadrant arc and is represented by q or q’. 

All great-circular arcs between a point and its polar are quadrant ares 
by Introduction, 6 e. 

Construction: To construct the two quadrant arcs, q and q’, between a 

given point and a given great circle not the polar of the point. 

Let 6 in Figure 189 be the great circle through the given point, A, and 
the pole, P, of the given great circle, a. Let Q be the pole of B. Then Q 
lies on a, by Introduction, 6%. Let the second intersection of the great 
circle of Q and A with a be Q’. Then AQ = AQ’ = 90°. 

ConstrucTION CoroLuaRy: If between a given point and a given great 

circle the great circle of the perpendiculars and the great circle of the quadrant 

arcs are drawn, then 

1. The four right triangles formed with a vertex at the given point are 

special right triangles, and the constructed great circles intersect perpen- 

dicularly at the given point. 

2. The intersections of the two constructed great circles with the given 

great circle are 90° of arc apart. 

Fra@ure 189 Ficure 190 



4, THE S§8.A.A. CASE 177 

3. The great circle of the quadrant arcs intersects the given great circle at 
two angles, each equal to the arc length of the constructed perpendicular arc 

which lies within that angle. 

In Figure 190 the given point and given great circle are A and a respec- 
tively, and the constructed perpendiculars and quadrant arcs are p and p’ 
and g and q’ respectively. The proofs of statements 1, 2, and 3 are immedi- 
ately seen by the application of theorems 2 and 1 of section 17 (on special 
right triangles) to the construction, described above, of the quadrant arcs 
from a given point to a given great circle. 

Lemma 1: (Polar analogue of Napier’s Corollary 3 a). If two ares 

(not on the same great circle) between a given point and a given great circle 

are supplementary and unequal, they must straddle * one of the quadrant 

arcs between the point and the great circle. 

By the principle of continuous varia- 
tion of arcs between points and great cir- 
cles (see the previous section), since 
continuous functions take on all values 
between any two taken on, and since 90° 
lies between two supplementary and un- 
equal values, a quadrant are must lie be- 
tween the given unequal supplementary 
arcs 6 and 0’ connecting the point A with 
the great circle a. (See Figure 191.) As 
there are two quadrant arcs —on the 
same great circle— between A and a, 
one of these, g, must lie in that angle 
formed by 6 and b’ which is less than 180°. 

Lemma 2: In the s.a.a. Ambiguous Case, according as the given side, 

b, and the given adjacent angle, A, are in the same or different quadrants, 

the quadrant arc, q, from C and lying within angle A, must be farther 

from or nearer to angle A than is that perpendicular from C which lies 

within angle A. a 

If angle A is acute (see Figure 192), 
the aes will “a the mies one, 
p. If bisalso acute, those arcs connect- 
ing C and side c which lie between b and 
p have values between the values of b 
and p — because the two perpendiculars, 
p and p’, are the only extreme arcs be- 

tween C and side c— and must, there- 

fore, be acute. Hence, g = 90° will lie farther from A than will the perpen- 

dicular p. However, if 6 is obtuse, g = 90° must lie between the obtuse b 

and the acute perpendicular p, by the principle of continuous variation. 

The reasoning for angle A obtuse is entirely similar. 

Figure 191 

Ficure 192 

* See the definition of ‘‘straddle”’ in section 12. 
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TuroreM 2: If a particular s.a.a. case has a double solution, then the 

altitude necessary for the right-triangle-solution will lie inside or outside 

both solution triangles, according as the given side and given adjacent an- 

gle are in the same or different quadrants. 

C C 

@) z 

: ® ® 
Figure 193 Figure 194 (a) Figure 194 (6) 

Side b same quad- Side b different quad- 
_Tant as angle A rant from angle A 

From Figure 193 and by Napier’s Rules the two values for side a are to be 
found from the sine. 

sin p = sinasin B, 

and sina = sin pese B. 

These two values for a cannot be equal, because then the sides a, by Napier’s 

Corollary 3 a, would straddle the perpendicular, p or p’, from C. This is 
impossible, by theorem 1. Consequently, the two values for side a must be 
supplementary and unequal for two solutions. 

Hence, by lemma 1, the two sides a; and a2 must straddle g, but not p. 
Then, by lemma 2, according as the given side } and the given adjacent 

angle A are in the same quadrants or in different quadrants, the two possible 
positions of the unknown side a, opposite the given angle A, are both farther 
from or both nearer to the vertex A than is the perpendicular, p. (See Fig- 
ure 194 (a) and (b).) 

THEOREM 3: If a particular s.a.a. case is to have a double solution, the 
given opposite parts must lie in the same quadrant. 

We now have two criteria for the position of the perpendicular from the 
vertex of the unknown angle: that of theorem 1, depending on whether the 
two given angles are in the same quadrant or in different quadrants, and 
that of theorem 2, depending on whether the given side and given angle 
adjacent to this side are in the same quadrant or in different quadrants. 

Suppose, first, that the given angle adjacent to the given side is in the 
same quadrant as the other angle: Then, by theorem 1, the perpendicular ? 
from the vertex of the unknown angle will lie inside both triangle solutions. 
Now then, if the given side were not in the same quadrant as the given 
angle opposite it, this given side would not be in the same quadrant as its 
adjacent angle and, therefore, by theorem 2, p would lie outside both tri- 
angle solutions, which contradicts the above supposition. 

The proof for the given angle adjacent to the given side not in the same 
quadrant as the other given angle is entirely similar. 
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@ 
FIGurRE 195 Figure 196 

THEOREM 1: Given angles in same quadrant. THEOREM 1: Given angles in different 
quadrants. 

THEOREM 2: Given side and given adjacent THEOREM 2: Given side and given adja- 
angle in same quadrant. cent angle in different quad- 

rants. 

THEOREM 3: Given side and given opposite THEOREM 3: Given side and given op- 
angle in same quadrant. posite angle in same quad- 

rant. 

Figures 195 and 196 picture the results of the above three theorems 

for the cases in which the s.a.a. triangles have double solutions. 

PRINCIPLE OF CoNnTINUOUS VARIATION IN THE ANGLE BETWEEN A 

GIVEN GREAT CIRCLE AND GREAT-CrRcULAR Arcs THROUGH A GIVEN 
Point. The angle at which a variable arc, between a given point and a 

variable point on a given great circle, intersects the given great circle 

varies continuously between the extreme angles p and p’, the angular 

lengths of the perpendicular arcs between the given point and given great 

circle. The extreme values are taken on at points 90° of arc from the 

feet of the perpendiculars from the given point to the great circle. By a 

property of continuous functions, all values of the angle between those for 

any two positions of the vertex must be taken on as the vertex moves con- 

tinuously from one to the other of these two positions. 

In Figure 197 the given point and given great circle are A and a, respec- 
tively. D and D’ are the intersections of p and p’, respectively, with a, 
and Q and Q’ are the intersections of g and q’, respectively (the quadrant 
arcs from A to a), with a. 

Point B is considered to move to the 
left and angle B is taken as angle ABD, 
where BD is taken opposite to the motion of 
B. In this way angle B is kept on the 
same side of the arc AB. 

By Napier’s Rules: 

sin BD = cot B tan p 
B = cot [(cot p) sin BD] 

where cot p is constant. 
For the point B on DQD’ sin BD varies 

continuously between 0 (B at D), 1 (B at 
Q), and 0 (B at D’), and, therefore, angle Figure 197 
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B varies between 90°, p, and 90°, respectively, since the are cotangent func- 

tion is continuous between 0 and cot p. 
By the same reasoning for right triangles to the right of the arc p, angle B’ 

varies between 90° (point B at D’), p (point B at Q’), 90° (point B at D). 
Consequently in this second half of the great circle a, the angle B varies 
from 90° (point B at D’) to p’ (point B at Q’) to 90° (point B at D again). 

The geometrical description and classification of s.a.a. triangles can 

now be investigated. The procedure for all general cases, neither the 

given side nor its given adjacent angle being equal to 90°, is as follows. 

(See Figure 198.) 

1. Draw the lune determined by 

the given angle, A, adjacent to the 6) 

given side, b. 

2. From the vertex A of the lune 
and along one of its sides lay off the ® A! 

given side b to fix the vertex C of the 

required triangle or triangles. 

3. Let the vertex B move from A 

to A’, continuously along that side of 

the lune which is opposite C, and note 

the variation in the angle B of the FicureE 198 

triangle ABC. In this process the 

principle of continuous variation of angle between a given great circle and 
great-circular arcs through a given point is most useful. Furthermore, 

the three auxiliary ares from C and lying within angle A: 

a. the unique perpendicular, p or p’, meeting the side of cin D or 
D’, respectively, 

b. the unique quadrant arc, g, meeting c in Q, and 
c. the unique arc b or b’ meeting ¢ in B or B’, 

should be sketched and their several 

properties, hitherto discussed, re- 

called. Accordingly, the relative 

positions of A, D or D’, B or B’, 
Q, and A’ on the side of ¢ will be 

known. (See Figure 199.) 

4, On the basis of the investigations 

in (3) and by means of theorems 1, 2, 

and 3 of this section, together with 

he propertiets of the three auxiliary 

ares sketched from C to c, the types 

of possible solutions (and their geo- Figure 199 

C 
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metrical representations) can be classified according to the value of the 
given second angle, B. 

The above procedure has been applied to the four combinations which 
together include all the general cases with results indicated below. To 
describe the procedure further a more complete explanation is given in 

the first and third combinations. Finally, the results of all cases are 
summarized in one concise statement. 

Side a = 90° b p 

B D A 

Vertex B at: { Q 

oA’ 

Angle B = 0 ee P* oe i os ee 180° 

No. of Solutions 

Special types 

of Triangles 
orc p--R— OO W---R— 

4mIO-— wD— —— — — 

First Combination: A acute, b acute; Figure 200. 

As vertex B moves from A to D, angle B decreases from A’ to 90°. 

As vertex B moves from D to B, angle B decreases from 90° to A. 

As verter B moves from B to Q, angle B decreases from A to p.* 

As verter B moves from Q to A’, angle B increases from p to A. 

This variation in angle B according to the position of vertex B is indi- 

* Note that, by Napier’s Rules, 
sin p = sin b sin A. 

Hence, sin p is never greater than sin A. Therefore, 

p < A, A acute; p’ > A, A obtuse. 
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cated by the curved arrow in the accompanying diagram. The range of 

values of angle B which are taken on twice, that is, the range over which 

the arrow showing the motion of vertex B curves back, is the range of 

values of angle B which will give double solutions. 

The results of the diagram for this first combination can be summa- 

rized: 

1. There will be two solutions if the value of the given second angle, 

B, lies between the value of angle A and the value of the (acute) per- 

pendicular, p, from C lying within A. 

2. There will be one solution if the value of the given angle B lies (a) 

between A and A’, or (b) at either extremity of the above range for 

double solutions. 

3. There will be no solution for any other value of B. 

Side a = p b’ 90° 

A’ D B’ 

Vertex B at: { : Q 
Ae 

Angle B = Vincente 9 OR Ke A’ j ¥ < p <'« 180 Cas | +4 OHSS 

| isties sail ale 
No. of Solutions 0 0 ‘st 1) Soa 8 iG 

| 
R Q 

Special types | U 

of Triangles G A 
H D. T 

Second Combination: A acute, b obtuse; Figure 201. 



4. THE S8.A.A. CASE 183 

FicureE 202 

Side a = 90° b’ p’ 

B’ D’ iN 
e 

Vertex B at: { Q 

as". 

Angle B = On pe Ries 20: tas A < 180° 

aa | | 
6) —=—- hD——— fo No. of Solutions 

Special types 

of Triangles 
uU>co 

4IQ-wW---——-— 

Third Combination: A obtuse, b acute; Figure 202. 

As vertex B moves from A toQ, angle B decreases from A’ to p. 

As verter B moves from Q to B’, angle B increases from p to A’. 

As vertex B moves from B’ to D’, angle B increases from A’ to 90°. 

As vertex B moves from D’ to A’, angle B increases from 90° to A. 
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(a) 

Figure 203 

Side a = p’ b 90° 
A D’ B 

Vertex B at: { IN Q 

Angle B = O-. -NTS “e 90? AL SS eee 

No. of Solutions 0) 

Special types 

of Triangles 
0 > CO-—-RH— 

Fourth Combination: A obtuse, b obtuse; Figure 203. 
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C 

(A) A 

(b) 

FIGureE 204. 

Special Combinations: 

G._A-= 90°: 

The triangle is then an ambiguous right triangle, a type discussed in 
section 16. 

b. A ~ 90°,b = 90°: (See Figure 204.) 

Since a quadrant are from C does not lie within the lune of angle A, 

double solutions are impossible, by lemma 1. Single solutions are ob- 

viously possible for angle B between the values A and A’, exclusive 

of the end values. 

Observation of all of the combinations of the s.a.a. ambiguous case will 

immediately verify the following. 

Classification of types of solutions in the ambiguous s.a.a. case. Let 

the given side and adjacent angle be b and A, respectively. By Napier’s 

Rules compute the perpendicular, p or p’ from C lying within angle A. 

Lét { A} be either A or A’, whichever is in the quadrant of b. Similarly, 

let {p} be either p or p’, whichever is in the quadrant of b. Then 

1. If the given value of B lies between {A} and {p}, there are two 
solutions. The altitude from C lies inside both solution triangles for B 

in the quadrant of A and outside both solution triangles for A and B 

in different quadrants. Furthermore, the sides opposite A in the two 

solution triangles straddle the quadrant arc from C. 

2. If the given value of B either (a) equals an end value of the above 

described interval for possible double solutions, or (b) lies in the interval 

A, A’, there is one and only one solution. The altitude from C lies in- 

side or outside the triangle according as B is or is not in the quadrant of 

A. 

3. If the given angle B has any other value, there is no solution. 
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Alternate Methods of Spherical 
Triangle Solution 

5. Critique 

The following sections deal with the derivations of formulas by which 

general spherical triangles can be solved without dividing them into two 

right triangles to be solved by Napier’s Rules. For certain given tri- 

angles some of these methods will be simpler than the right triangle 

method. The labor involved in first deriving and then remembering 

these formulas, however, outweighs any time which may be saved in the 

numerical calculation of certain problems by these special methods in- 

stead of by the one fundamental right triangle method. Furthermore, 

the right triangle method never leads to uncertainties, whereas, for in- 

stance, the law of sines method always leads to two solutions, and the 

spurious solution often cannot be discarded by the law of magnitude 

relation. In such a case an additional method must be invoked, making 

the actual computation more extensive than the computation by the 

right triangle method. 

These special methods are here briefly derived for those who may pre- 

fer them as alternate methods for certain triangles. They may be use- 

ful also for the light which they can throw on some of the specialized 

systems of navigation by which the professional navigator, having pre- 

viously been grounded in the theory of spherical trigonometry, solves 

certain frequently occurring types of triangles largely by tables.* In 

an attempt to make these derivations less blind, full use is made of any 

existing similarities with corresponding plane trigonometry laws. It is 

hoped that, since the plane laws are familiar and relatively simple, the 

spherical derivations will therefore be not merely proofs of arbitrarily 

stated truths but explorations of unknown but desired relationships. 

* See, for example, Ageton’s Method (devised by Commander A. A. Ageton), Dreisen- 

stok’s Method (devised by Commander J. Y. Dreisenstok), and Weems’s Method (devised 

by Lieutenant Commander P. V. H. Weems). 
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6. The Law of Sines 

In any spherical triangle the ratio of 

the sine of amy side to the sine of the 

angle opposite is the same as the corres- 

ponding ratios for the other sides and 

angles of the triangle, or: 

sina  sinb sin 

snA sinB sinC Ficure 205 

This law is markedly similar to the corresponding law in plane trigo-’ 

nometry in both statement and proof (compare Introduction, 22a). It 

is proved by dropping altitudes onto two sides of the triangle and equat- 

ing two expressions for each altitude by Napier’s Rules in the right tri- 

angles thus formed (see Figure 205). 

sin p, = sincsin A = sinasin C, 

Therefore, 

sna sinc 

sin A sin C 
sin p, = sincsin (tr — B) = sinbsin C, 

or 
snb sine 

sin B sin C 
Therefore, 

sin a sin b sin ¢ 

sn A snB snC 

Because unknowns are found from the sine or cosecant functions, this law 

leads to uncertainties which the law of magnitude of parts of a triangle 
may not be able to dispel. See example 1 on page 199 for an application 
of the law of sines to a particular triangle. 

te The Law of Cosines for Sides 

In any spherical triangle the cosine of any side equals the product of the 
cosines of the other two sides increased by the product of the sines of these 
other two sides and the cosine of the angle included by these other two sides, or 

cos 28 = cos b cose + sin b sine cos A 

and similarly for the sides b and c. 
Knowing of the existence in plane trigonometry of a law expressing an 
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(a) B 
Figure 206 

unknown side in terms of the other two sides and their included angle, 

one is led to explore by analogy a corresponding law in spherical trigo- 

nometry. Reference to Introduction, 22 b will justify the reasonable- 

ness of the following attack (see Figure 206): 

1. Drop an altitude onto a known side and express by Napier’s Rules 

— instead of by the Pythagorean theorem as in plane trigonometry — 

the unknown side in terms of this altitude and a ¢. 

cOS @ = COS [Pp COS do 

2. Express ¢2 in terms of a known side and ¢; — as in plane trigo- 

nometry. 

$2 = + (c — o1) 
cOs ad = COs p cos ¢ COS $1 + COS P Sin ¢ Sin d1 

3. The desire to eliminate the two unknown auxiliaries, ¢1 and 7p, 

and to introduce at the same time the other known side suggests writing 

the Napier’s Rule formulas involving all three of these parts. 

cos b = cos ¢1 Cos :— 

cos a = cos b cosc + cos p sin ¢ sin $1 

4. By analogy with the plane formula we now wish to introduce the 

known angle and eliminate the remaining factors involving an auxiliary. 

This suggests a Napier’s Rule formula involving A and one or both of 

the auxiliaries involved by their respective functions in the derivation 

to date. Simple experimentation will result in the obvious choice. 

sin ¢1 = cot A tan p 
cosa =cosbcosc+ cos p sinc cot A tan p 

cosa =cosbcosc+sinc cot A sin p 

5. Eliminating the remaining auxiliary in favor of known parts sug- 

gests a unique Napier’s Rule formula. 

sin p = sinbsin A 
cos a = cos b cosc + sin 0 sin ¢ cos A 

g.e.f. 
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If, instead of a derivation, 
that is, a motivated explora- 
tion of an unknown relation 
whose need is felt m a gen- 
eral way, a proof of the 
cosine law, previously and 
arbitrarily stated, is desired, 
the following geometric an- 
alysis will be found to be 
shorter than the synthesis FIGuRE 207 

given above. 
The vertices of the spherical triangle ABC (see Figure 207) are con- 

nected to the center of the sphere and tangents at A to the sides 6 and ¢ 
are drawn, meeting OB and OC extended in M and N, respectively. The 
plane angle MAN equals the spherical angle A by Introduction, 6b. The 
evaluations of the segments follows from Introduction, 9b and 116. Then, 
use the law of cosines in plane trigonometry (Introduction, 22 6) on the 
plane triangles OMN and MAN to evaluate the square of MN. 

MN? = sec? b + sec? c — 2 sec b sec c cos a 

MN? = tan?6 + tan?c — 2 tan db tanc cos A 

Subtracting sO aide eho i ty eee 
cos 6 cose cos b cose 

by Introduction, 14. Then 

cos a — sinbsinc cos A 

cos b cos c¢ 

0 = 2 cosb cosc — 2 (cosa — sind sinc cos A) 
cos a = cosbcosc+ sin b sinc cos A; ¢.e.d. 

0=2-2 

See example 1 on page 199 for applications of the law of cosines to par- 
ticular triangles. 

8. The Law of Cosines for Angles 

cos A= — cos Bcos C+ sin B sin C cos a, 
and similarly for angles B and C. 

This law naturally follows from “polarizing” the law of cosines for 
sides. First write this law for the polar triangle of the given triangle 

ABC using, as usual, primes to indicate supplements or corresponding 
polar parts. 

cos a’ = cos b’ cos c’ + sin b’ sin ¢ cot A’ 
Then, polarize. 

cos(r — A) = cos( — B)cos(r — C) + sin(r — B)sin(r — C)cos(r — a) 
— cos A = (— cos B) (— cos C) + sin B sin C (— cos a) 

cos A = — cos B cos C + sin B sin C cos a; q.e.d. 
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The two cosine laws, because they involve sums and differences in- 
stead of products and quotients, are not easily adaptable to logarithmic 
computation. 

9. The Half-Angle Formulas 

1. For angles: 

7 r r 
tan 3 A = ————., tan 4. B = ———_, tani. C = ——_—~ 

4 sin (s — a) _ sin (s — b)’ - sin (s — €) 

where 

= oth) autem (HEDGE G 
sins 

2. For sides: 

R R R 
tla =———_ cot i b = Ob 

ears ew ee GORY oe aos B= 0) 
where 

S=}(AFB+0) oan =,/% (S — A) cos (S — B) cos (S6—C). 

— cos 

1. These formulas, which are analogous to the similarly named for- 

mulas in plane trigonometry for the solution of the plane s.s.s. case, are 

useful in the logarithmic solution of this case in spherical trigonometry. 

Their derivations are also analogous to those of the plane trigonometry 

formulas and are roundabout transformations of the cosine laws. 

Since a formula is desired for an angle in terms of the three sides, it 

should be helpful — just as in the plane case — to solve a law-of-cosines- 

formula-for-sides for an angle in terms of functions of the three sides. 

cos a = cosb cosc+sin b sinc cos A 

cos a — cos b cos ¢ 
cos A ; ; 

sin b sin ¢ 

Now, exactly as in the plane case (compare Introduction, 22 c), by 

forming 1 — cos A and 1+ cos A, on the one hand, the half angle for- 

mulas will apply, and on the other hand, algebraic and trigonometric 

transformations lead to products which are more useful than sums and 

differences for logarithmic computation. 

cos a — cos b cos € 
2sin?4 A=1- ; 

sin b sin c 

cos a — cos 6 cos C. 
px aL = 

DE aa sin b sin c 
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i i — cos a IPT pr i essa ka c 

sin 5 sin ¢ 

‘ sin 6 sin c — cos b cos c + COs 4 
and 2 cog Al sirew Tire ee ae ee 

sin b sin ¢ 

b—c . —at+b-e 
— 2 sit 7 sin A 

sin b sin ¢ 

a+bt+c . a-—b-e 
ee 8 

ome 2 
sin b sin ¢ 

Hence, 2 sin? 4 A = 

— 2sin 

2 cos’? 5 A = 

As in plane trigonometry, let s = 4 (a+b+c). 

Then, oor en) Gt bie Ye 

2 2 2 

and therefore, 
; — 2 sin (s — c) sin (— s+ b) 

PS Ge iS a eee 
sin b sin ¢ 

— 2sin s sin (a — s) 
DCO it An ee eee 

sin b sinc 

: sin (s —c) sn (s—} pin a= 4 SO em SD) 
sin b sinc 

sin s sin (s — a) 
COS A 

sin 6 sin c 

The plus sign alone is possible, because for A, an angle of a spherical 
triangle, } A must be first quadrant. 

Consequently, tan3 A= A eULOSy) 

sin s sin (s — a) 

Writing the right-hand side of the above as 

14 ie: (s — a) sin (s — b) sin (s — c) 

sin (s — a) sin s 

; sin (s — i — bd) si Es andisene va <a Se ane 
sin s 
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the above formula becomes 
a 

tan 3 A= 
a sin (s — a) 

Since A is any angle of a spherical triangle, 

r r 
tan + B = ————- and tan 1 C = —_—_ 

sin (s — b) ao sin (s — c) 

If but one angle is required, the cosine formula requires less computation. 

If more than one is to be found, it is best to use the tangent formulas. 

2. Analogous formulas for functions of half the sides in terms of the 

three angles can be derived for the a.a.a. case in spherical trigonometry 

by polarizing the formulas given above for half the angles in terms of the 

three sides. (The analogous formulas, of course, do not exist in plane 

trigonometry, because the a.a.a. case in plane trigonometry is indeter- 

minate.) Or, the procedure in the derivation given above can be re- 

peated beginning with the law of cosines for angles: 

cos A = — cos Bcos C+ sin B sin C cosa 

ae _ cos A + cos B cos C 

; * sin B sin C 

nie _ —cosA—cosBcosC+sinBsinC  —cos A—cos(B+C) 

“eel sin B sin C sin B sin C 
and 

cos A+cosBcosC+sinBsinC cosA+cos(B-—C) 
er ee 

sin B sin C sin B sin C 

Therefore, 

a4 = | = 008 8 cos (S— A) ee 
ite - sin B sin C : sin B sin C 

d igo — [ee ee 6-3 

ies — cos S cos (S — A) 
1 cos (S — A) cos (S — B) cos (S — C). 

cos (S — A)V — cos S 

Finally, letting 

(cos (S'*— A) cos (8 —"B) cos (8'— C) 

zt — cos S 

and recognizing that a is any side of a spherical triangle, we have 

R Rk R 
a = ———_|;} 4.) = ———;; cot $e = ——_—: 

AOI le et (S — A)’ core? cos (S — B) +” cos (S — C) 

Since the sum of the angles of a spherical triangle must lie between 180° 
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and 540°, S must lie between 90° and 270°, which means that the cosine 

of S will be negative to insure the positiveness of the radicand. 

See example 2 on page 200 for applications of the half-angle formulas 

to particular triangles. 

10. Napier’s Analogies 

1. For angles: 

-tant (A—B) _ sin} (a—b) tan} (A+B) _ cos ¥ (a—b) 

cotkC  — siné (a+b) cot 4.C cos $ (a + b) 

and similar pairs of formulas involving a and c, and b and c. 

2. For sides: 

tank (a—b) _ sind (A—B) tan} (a+b) cos} (A—B) 
tanéc¢ ~ sink (A+B) tan $c cos $ (A+ B) 

and similar pairs of formulas involving A and C, and B and C. 

The formulas for angles are obviously ‘‘analogous” to the law of 

tangents in plane trigonometry, discussed in Introduction, 22d. The 

formulas for sides are mere polarizations of the formulas for angles. 

In logarithmic solutions of the s.a.s. and the a.s.a. cases, a suitable 

pair of formulas from these two sets — that is, two formulas involving 

the same five parts of a spherical triangle — is convenient. The use of 

two formulas is illustrated in example 4 on page 202. 

In the solution of the a.s.s. and s.a.a. ambiguous cases, individual 

formulas from these two sets are essential.* Any one of these formulas 

can be solved for one part of a spherical triangle in terms of two pairs 

of opposite parts. Given one pair of opposite parts and a third part, 

the two pairs of opposite known parts can be supplied by an application 

of the law of sines. The use of the law of sines and of an individual 

Napier’s analogies formula are needed for the solution of problem 6 on 
page 203. 

In plane trigonometry oblique triangles can always be solved by the law 
of sines and the law of cosines. In spherical trigonometry, however, be- 
cause the values of two angles of a spherical triangle do not determine the 
third angle, oblique triangles cannot always be solved by the law of sines 
and cosines. Hence, while in plane trigonometry the law of tangents is 
merely a logarithmic convenience, in spherical trigonometry Napier’s anal- 
ogies are a necessity. 

1. Beginning with the law of sines (by analogy with the law of tangents 
in plane trigonometry): 

sin A sina 

sin B sinb 

* Thatis, when the division-into-right-triangles-method, recommended in the text proper 
for the solution of all oblique spherical triangles, is not used. 
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and, as in plane trigonometry, taking this proportion in subtraction and 
addition: 

sn A—sinB_ sina—sinb 

sn A+sin B sina+sinb 
2 cos $ (A + B) sind (A — B) _ 2 cos $ (a+b) sin $ (a — b) 

2sin$ (4+ B)cos}(A-—B) 2sin3 (a+b) cost (G@—b) 

tan (A — B) © tan 3 (a — b). 

tan$(4+B) tan} (a+b) 
This is analogous in form to the law of tangents in plane trigonometry. 
This, however, is useless in spherical trigonometry for the solution of the 

s.a.8. case, because in spherical triangles — in contrast to plane triangles 

where the sum of the angles is constant — knowing angle C does not de- 

termine (A + B). From this we conclude that the one formula above 

cannot be used to find (A — B), but that two formulas are needed, one for 

+ (A — B) and one for (A + B), each involving functions of $ (a + b) and 
4 (a—b). These essentials, plus the fact that sines and cosines are 

more susceptible to formula manipulation than tangents and cotangents, 
might naturally suggest the following transformation on the above: 

sin 4 (a — b) 

tan$(A—B) cost (a—d) 
tan3 (A+B) sin} (a+b) 

cos ¥ (a + b) 

sin + (a — b) 

tang (A—B)_ sin} (a+5d) 

tan 3 (A + B) ~ cos 4 (a — b) 

cos % (a + b) 

From this, keeping in mind what is wanted: that is, a formula for 

4 (A+B) and another for } (A — B), each involving + (a+b) and 

4 (a — b); we can write 

or 

_, sing @—5) if _ , O82 ab)" 

ea eae 5): aA) cos % (a + b) 

The problem now is to evaluate.k, This quantity kis to satisfy two con- 

: ee 
soa) By re ice then we can define k by c=km. Then y, which is equal to x - is given by 

y on 
n 

y=km— or y=kn. 
m 

Hence, cell implies c=km, y=kn. 
y on 
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ditions. Multiplying together the two equations above gives an expres- 

sion involving both conditions on k and should therefore lead to the 

evaluation of k, 
. , sin 4 (a — b) cos 3 (a —b) 

tan 3 (A — B) tan 4 (A + B) Wd (act) dak oe in 4 (a + 6) cos 4 (a +b) 

Replacing tangents by sines and cosines, since more formulas are avail- 

able for these latter two functions, we get this equation: 

coal AU Meme 6 Rcd) ~ pee ee 

cos 4 (A — B) cos $ (A + B) sin 4 (a+ b) cos 4 (a + b) 

Perform the suggested ‘ati ormations to iustite functions ae each whole 

angle separately. 

—}(cosA—cos B)_ ,,$sin (a—b}) 

4 (cos A + cos B) 4 sin (a + 5) 

Angles A and B can now be evaluated in terms of sides alone by means of 

the law of cosines for sides, thus evaluating k? in terms of sides alone. 

4 cosa—cosbecose cosb— cosacose 
sin (a b) x AAA 

sin b sin ¢ sin a sin ¢ 
hee 

f cosa—cosbcose . cosb—cosacose 
sin (¢ — 0) —— SS 

sin b sin ¢ sin a sin ¢ 

The remaining steps, though complicated looking, are immediately sug- 

gested by the natural desire for simplicity. 

sin (a+ b) sin a cos a— sin a cos b cos c— sin 6b cos b+ sin 6 cos a cosc 

i= ""\gin (a 0) si @ God @ > ain @ eos h oat ean Oe 

_ _ sin (a+b) 2 sin 2 a— cos c (sin a cos b — cos a sin b) — 3 sin 26 

sin (a — b) 3 sin 2a— cos c (sina cos b+ cos asin b) + 3 sin 2b 

* _ sin (a+) 3 (sin 2a — sin 2b) — cos c sin (a — b) ; 

x ~ sin (a— 6) 3 (sin 2@+ sin 2b) — cos c sin (a + B) 

_ _ Sin (a+ b) 3 2 cos (a+ b) sin (a — b) — cos c sin (a— b) 

sin (a — b) 3 2sin (a+ b) cos (a — b) — cos c sin (a+ b) 

_ _ cos(a+b)—cose_ _— — 2sin } (a+ b+c) sin} (a+b—c) 

cos (a — b) — cosc — 2sin 3 (a+c-— b) sin 3 (a—b—c) 

=e sin s sin (s — c) = sin s sin (s — c) 

sin (s— b) sin(a— ss) _ sin (s— a) sin (s— b) 

sin s in? (s — 

= SEDGE oo = BE 

Therefore, k = meno. = cot 4 C, by the previous section.* 

* Of the two algebraic possibilities, k= —--cot 5 , only the plus sign is possible. 
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sin + (a — b) 

sin $ (a+ b)’ 

cos + (a — b) 
= a aa ere 

cos ¥ (a + b) 

from which, by dividing by cot 4 C, the desired formulas are obtained. 
q.e.f. 

Since the parts of the spherical triangle represented in the pair of 

formulas above are any set of parts exhibiting the given relationships 

of “opposite” and “included,” the formulas have been proved for all 
other similar sets of parts of the spherical triangle. 

If two sides and the included angle of sny spherical triangle are 

given, these formulas are convenient for the logarithmic evaluation of 

half the difference and half the sum of the other two angles. Add- 

ing and subtracting half the sum and half the difference will give 
these other two angles individually. 

3. The desire to investigate polarizing the pairs of formulas above 

should be a natural one. Beginning with the above law applied to the 

polar triangle (so that the formula to be derived will apply to the given 

Therefore, tan 4 (A — B) = cot $C 

and tan $ (A+ B) = cot $C 

triangle) : 
A'—B' He =v A’ B’ Ee We ae 

tan 5 a 5) tan a. cos ~ = 

C’ or P a’ +0’ eu == 1 1 

cot > sin >) cot > cos ~ i 

peer (x —'b) ee EB) en ee? wytaAn (r= 8) 

2 pei Sigh ide ity pete 2 
ee in FIAT 8) eet pet etm sa 

2 2 2 2 

tan— 4 (a—b) _ sin. — 4 (A — B) tan[r—74(a+b)]  _cos— 3(A—B) 

tan 3c sin[r — 4 (A+ B)] tan 3c ~ eos [ — 3 (A+ B)] 

— tan}; (a—b)_ —sin3 (A— B) —tan3(a+b)_ cos3(A—B) 

tan 3 ¢ sin 3 (A + B) tan 3¢ ~ — cos} (A+ B) 

tan 3(a— 6) _ sin} (A—B) | tan3z (a+b) cos}(A—B). 

tan $e sin } (A + B) tante cos (A+B) 

11. Some Haversine Laws 

DeFInition: The versed sine,* that is, “reversed : 

sine,” of an angle is one minus the cosine of the angle, or 
cos 9 

vers 6 = 1 — cos 0. vers 8 

* The versed sine of a central angle is that part of the radius of 

the unit circle between the foot of the sine of the angle and the arc. 
FIGuRE 208 

(See Figure 208.) 
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Derinition: The haversine of an angle is half the versed sine of the 

angle, or 
hunts 1 — cos 0 
ORT ae 

TueEorEM: hav 6 = sin? 3 4. 
The half-angle laws and the cosine laws can now be transformed to 

give formulas involving this haversine function. These haversine laws 

are sometimes used for solution of spherical triangles when the some- 

what bulky haversine tables are available.* The haversine laws con- 

tribute nothing essentially new to the theory of spherical triangles, 

but their use reduces by one or two the number of operations with tables. 

1. The haversine formulas for an angle in terms of three sides, the 

8.8.8. case, and the haversine formulas for a side in terms of three angles, 

the a.a.a. case: 

a. hav A = sin (s — c) sin (s — b) ese b ese ec; and so forth. 

b. hava = — cosS cos (S — A) esc Bese C; and so forth. 

The justification of the above formulas follows immediately from 

the theorem given above — based on the definition of the haversine 

function — and the expressions derived in section 9 for sin4 A and 
sin 4 a, respectively. 

The use of these haversine formulas rather than the half-angle formu- 

las, from which they are an immediate consequence, saves taking a 

square root and multiplying the half angle by two. 

2. The haversine formulas for a side in terms of the other two sides 

and the included angle, the s.a.s. case, and the haversine formulas for 

an angle in terms of the other two angles and the included side, the 
4.8.2, Case: 

a. hav a = hav (b — c) + sinb sinc hav A; and so forth. 

b. hav (7 — A) = hav (B + C) — sin B sin C hav a; and so forth. 

Since the haversine is defined in terms of the cosine, the cosine laws 
are obvious points of departure in deriving the haversine laws. For 

formula (a) replace the cosines of the side and opposite angle in the law 

of cosines for sides by their equivalent expressions in terms of haversines. 

cosa = cosbcose +sinbsincecos A 

1 — 2 hav a = cosb cosc +sin bsinc (1 — 2 hav A) 
1—2hava=cosbcose +sin bsine —2sinbsinchav A 
1 — 2 hav a= cos (6 —c) — 2sinb sinc hav A 

1—2hava=1-—2hav (b—c) —-2sinbsinchav A 
hav a = hav (6 —c) + sinbsinc hay A 

* See Bowditch’s Practical Navigator or Useful Tables, published by the Hydrographic 
Office (Washington, D.C.: Government Printing Office). 
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In this case polarization of (a) does not help us to derive (b). To com- 
plete the derivation up to the last step, paraphrase the right-hand 
side of the derivation given above, beginning with the law of cosines 
for angles. Then use a familiar property of the cosine. 

cos A = — cos BcosC + sin B sin C cosa 

cos A = — cos BeosC + sin Bsin C (1 — 2 hav a) 

cos A = — cos BcosC + sin B sin C — 2sin Bsin C hav a 

cos A = — cos (B+ C) — 2sin Bsin C hav a 

1+ cos A= 1-—cos(B+C) — 2sin BsinC hava 

1+cosA = 2hav (B+ C) — 2sin BsinC hava 

1 — cos (x — A) = 2hav (B+ C) — 2sin BsinC hava 
2 hav (7 — A) = 2hav (B+ C) — 2sin BsinC hava 

hav (7 — A) = hav (B+ C) — sin Bsin C hava 

The haversine laws involve looking up one less logarithm than the 
respective cosine laws from which they are derived. 

See example 3 on page 201 for applications of the haversine laws to 
particular triangles. 

12. Illustrative Examples 

Exampte 1. By means of the law of sines and the law of cosines for sides solve 
the triangle two of whose sides are respectively 110° 30’ and 65° 15’ and whose in- 
cluded angle 1s 125° 20’. Use a slide rule. 

A =125° 20’ 

a 

Figure 209 

Figure 209 shows the labeling of the given parts. The cosine law will evaluate 
the third side, a, after which the sine law may be applied to compute the two 
unknown angles, B and C. 

cos a = cos 110° 30’ cos 65° 15’ + sin 110° 30’ sin 65° 15’ cos 125° 20’ 
— 0.1465 — 0.490 

— 0.637 

a = 129° 40’ 

sin B = sin 110° 30’ sin 125° 20’ csc 129° 40’ 
= 0.994 ° 

B = 84° or 96° 

sin C = sin 65° 15’ sin 125° 20’ csc 129° 40’ 

= 0.964 

C = 74° 30’ or 105° 30’ 

I i ll 
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When side a is evaluated the order of magnitude of the sides is seen to 
be c<b<a. Hence, the order of magnitude of the angles is C< B< A. 
Since the second quadrant angle C, 105° 30’, is larger than either of the possi- 
bilities for angle B, angle C is obviously 74° 30’. However, both answers 
offered for angle B satisfy the law of magnitude of the parts of the triangle. 
Hence, the proper quadrant of angle B must be determined by investigating 
the sign of its cosine in the law of cosines for sides. 

cos b = cosacosce+sinasinccos B 

cos 110° 30’ — cos 129° 40’ cos 65° 15’ — 0.350 + 0.268 

(a positive quantity) j (+) 

cos B = (—). Therefore B is second quadrant and = 96°. 

a = 129° 40’; B = 96°; C = 74° 30’. 

cos B= 

Therefore, 

EXAMPLE 2: Solve completely the spherical triangle whose three sides are re- 
spectively 38° 05’ 26”, 116° 22’ 07”, and 151° 38’ 43”. Use the half-angle for- 
mulas and logarithms. 

Figure 210 shows the labeling of the given parts. 

C 

(a =38° 05’ 26") b=116°22/07* 

é : A 
FIGURE 210 

r r r fat $A =. and Be 
nee ain (— a)? 2 POE PS Ti sin (s—c)’ 

where tee Geen ea sin (s — a) sin Se b) sin (s — c) 

——____—- sin s 

Gh Bo Usy On 
b= 116° 22/077 
C—Woleeeut ge 

2s = 306° 06’ 16” 
S = 153° 03’ 08” Jesc 10.34373 

s—a= 114° 57’42” Isin 9.95741 lese 10.04259 
s—b= 36°41’01” Isin 9.77626 Lese 10.22374 
s—c= 1°24'25” Isin 8.39010 

(s = 153° 03’ 08”) go 
r 2log 8.46750 log 9.23375 log 9.23375 log 9.23375 

10° 41’ 58” btan 9.27634 ae 
15° 59’ 58” btan 9.45749 

A 
B= 

C = 81°50’ 37” Itan 10.84368 

A 
B 
C 

lcse 11.60990 

ll 

tol bolt tol 

21° 237 56” 
31° 50’ 56” 

163° 41’ 14” 
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Features to be noted: 
1. The arithmetic involved in finding s — a, s — b, s— c should be checked 

by adding to give back s as is shown in parentheses. 
2. Although 7 need never be explicitly evaluated, the line on which its 

logarithms are written, should be labeled r. 

EXAMPLE 3: Given the spherical triangle in which two sides and the included 
angle are respectively 83° 54’ 18’’, 22° 38’ 25”, and 79° 37’ 47”, jind the third side 
by the haversine law and the two angles by the sine law. (This type of solution is 
sometimes referred to.as the ‘“haversine-sine” method.) 

C =79°37/47" 

b =22° 38/25" 

a =83° 54/ 18”) 

C 

Figure 211 

The labeling of the given parts is indicated in Figure 211. Then, 

hav c= hav (a — b) + sinasin b hav C 

sin A = sin C sin acscc 

sin B = sin C'sin b esc c 

a = 83° 54’18” Isin 9.99753 lsin 9.99753 
b = 22° 38’ 25” Jsin 9.58540 Isin 9.58540 

a—b=61° 15’ 53” n hav 0.25962 
C = 79° 37/47” Lhav 9.61278 lsin 9.99285 Jsin 9.99285 

: lhav 9.19571 nhav 0.15693 

¢ = 80°23’ 34” nhav 0.41655 Jesc10.00614 Jcse 10.00614 

beh 1 82° 45/ 36” Isin 9.99652 
97° 14’ 36” 

Bae. 22°35 06” lsin 9.58439 

The law of magnitude of parts of a triangle determines that B = 22° and not 
158° but fails to select the proper A. Testing the quadrant of angle A by a 
law of cosines with a slide rule will accomplish this: 

cosa—cosbcosc cos 84° — cos 23° cos 80° 
cos A = ——————_—__—_ = 

(+) (+) 

0.1045 — (0.920) (0.1788) _ 0.1045 — 0.1595 _ (=) _ _) 
‘i a ee (+) (+) 

Therefore A is second quadrant. Hence, 

c = 80° 23’ 34”; A = 97° 14’ 36”; B = 22° 35’ 06” 

Features to be noted: r) 

1. All formulas to be used were stated in computation form and under- 

scored at the outset. 
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2. Since hav c involves a sum, the antilog of 9.19571 (that is, 0.15693) 

in column two must be found from tables. The labeling given 9.19571 

could have been log. instead of log haversine. 

3. In many (perhaps most) cases the law of magnitude of parts of a tri- 

angle will determine the quadrant of both unknown angles. This more 

troublesome and frequently occurring case is given here to provide a com- 

plete illustration of the haversine-sine method. 
4. Both tentative values of A were read from the tables, which accounts 

for the slight discrepancy in their supplementary relationship. 

Examp es 4: By logarithms and using only Napier’s analogies solve the spherical 
triangle two of whose sides are respectively 122° 39’ 48” and 44° 13’ 05” and whose 
included angle is 72° 01’ 21”. 

(C =72°01' 21") 

(a =122°39/ 48” 

b=44°13/ 05" ) 

. A 

FIGURE 212 

The labeling of the given parts is shown in Figure 212. 

tang (A — B) = cot $C sin$ (a— 6) ese § (a+ ) 

tan} (A + B) = cot $C cos} (a — 5) sec 3 (a+ ) 

tan $c = tan 3 (a — b) sin} (A + B) ese § (A — B) 

@ = 1222508 4 
b = 44°17 05" 

a+6 = 166° 52’ 53” 
a—b = 78° 26’ 43” 

Cae pA ek 

$C = 36° 00’ 40” J cot 10.13856 J cot 10.13856 

+ (a—b) = 39° 13’ 22” Isin 9.80095 Zcos 9.88913 Jtan 9.91181 

2 (a+b) = 83°26’ 26” ese 10.00285 Zsec 10.94221 
4(A— B) = 41°12’33” Itan 9.94236 —_ lese 10.18124 
2 (4+ B) = 83°52/58"* _ Itan 10.96990 sin 9.99752 

ke = 50°55’ 54” 1 tan 10.09057 

* Interpolation here is from the nearer minute — contrary to general usage which is 
from the smaller minute. The divergence from general custom here is due to the large 
tabular difference. 
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13. Problems for Appendix II 

1. Solve by the half-angle formulas the spherical triangle in which 
a = 38° 05’ 26”, b = 116° 22’ 07”, and c = 151° 38’ 43”. 

2. Solve the spherical triangle ABC in which A = 63° 42’ 18”, b = 123° 15/ 
20”, and c = 27° 04’ 52”’, by Napier’s analogies. 

3. Find the distance and the initial course for a great-circle track from San 
Francisco (lat. 37° 47’ 30” N., long. 122° 27’ 49” W.) to Sydney (lat. 33° 51/41”S 
long. 151° 12’ 39” E.). Use the haversine formula 2 a and the law of sines. 

4, Aman flies in a generally westward direction from a place A (lat. 30° 25’ N., 
long. 70° 20’ W.) to a place B (lat. 20° 15’ 8.) a distance of 4232.5 nautical miles. 
Find the longitude of B, using haversine formula 2 a. 

“2. 

5. A man flies on a great-circle course in a generally westward direction from 
a place A (lat. 25° 44’ 40” N., long. 30° 16’ 25” W.) to a place B for which the 
longitude is 70° 44’ 15’’ W. The angle of departure (PAB) is 25° 35’ 40”. 
In the spherical triangle ABP (P is the North Pole) solve for the distances A B 
and PB by Napier’s analogies. 

6. Solve the spherical triangle ABC in which a = 40° 05’ 26”, A = 29° 42’ 
34”, and c = 26° 21’ 18”, by the law of sines and Napier’s analogies. 

7. The sides of a spherical triangle are a = 50° 12’ 04”, b = 116° 44’ 48”, and 
c = 129° 11’ 42’. Find the angle C by using the haversine formula (1 a). 

8. Solve the spherical triangle in which C = 82° 33’ 31’’, a = 99° 40’ 48”, and 
B = 114° 26’ 50” by the law of cosines for angles and the law of sines. 

9. Given a = 122° 37’ 14”, b = 88° 12’ 39”, and c = 48° 58’ 07”, find angle B 
by a haversine law and angle A by the sine law. Determine in which quadrant 
A lies. 

10. Using a law of cosines, find by logarithms the side a of the spherical 
triangle in which b = 47° 44’ 00”, c = 53° 19’ 28”, and A = 52° 30’ 00”. 

11. Given a = 80° 10’ 00”, b = 104° 25’ 00”, and c = 139° 40’ 32”, find B by 
the haversine formula 

hav B = sin (s — a) sin (s — c) esc acscc. 

12. Solve the spherical triangle by the tangent of the half-angle formulas. 

a = 44° 25' 137, b = 67° 09 14", c= 91° 32’ 15”. 

13. A pilot flies on a great-circle course with average speed 190 nautical miles 

an hour. He starts in the northern hemisphere on course 52° 13’ 20” and, after 

changing his longitude by 115°, he is on course 158° 17’ 45’. How long has 

this flight taken the pilot, by how much did he change his latitude, and how 

close did he come to the North Pole? 

14. Given d = 38° 17’ S., lat. = 24° 33’ 30” N., t = 28° 27’ 38”, find h by 

the haversine formula 

hav (90° — h) = hav (lat. — d) + cos lat. cos d hav t. 

15. If a ship sails along the arc of a great circle from Point Loma (lat. 32° 

39’ 48” N., long. 117° 14’ 37” W.), outside San Diego Harbor, to Otago Harbor, 

Taivoa Head Light (lat. 45° 46’ 55’ S., long. 170° 44’ 02” E.), the harbor at 
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Dunedin, New Zealand, what initial course should she set and how far does she 
sail? Solve completely by Napier’s analogies and check by the law of sines. 

16. A navigator estimates the azimuth of a star, of declination 42° 10’ N., to 
be 65° 30’ east of north at the instant the assistant navigator observes the alti- 
tude of the star to be 36° 28’ 30’. If these observations were made at a chro- 
nometer instant indicating that the Greenwich hour angle of the star was 250° 
03’ 48’, find, by the methods of Appendix II, where the point of observation 
might have been. If the observations were made aboard a ship, where must the 
ship have been? 



Instruments for Observing Spherical 

| APPENDIX III 

Trigonometry Data 

Part ONE: The Seztant 

14. General Description of the Sextant 

The sextant is a relatively simple instrument by which the angle at 

- the point of observation between the lines of sight to two points can be 
measured. Chief of such observations is that of finding altitudes of 

celestial bodies. The principle involved in this procedure is described 

below. 

Ray from 

horizon 

FiGureE 213 Figure 214 

Figure 213 shows a modern sextant. Figure 214 is a simplified sketch 

of the principal parts of this instrument in the vertical position necessary 

for observing altitudes. MM isa mirror, the “index glass,” perpendicular 

to the plane of the arc or “limb” of the sextant, and mounted on the 

arm m. This arm is pivoted at the top at the center of the arc of the 

sextant. The amount of turning of the index glass M is indicated by the 
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position of the pointer on the lower end of the arm on the scale S of the 

arc or limb of the sextant. H is called the horizon glass. It too is per- 

pendicular to the plane of the arc or limb, but it is fixed to. the frame. 

The half of the horizon glass nearer the frame is silvered to form a mir- 

ror; the other half is clear. T' is a telescope trained on the center of 

the horizon glass. The index mirror is in the field of vision reflected 

from the horizon glass. 

15. Observing the Altitude of the Sun 

Suppose the altitude of the sun at sea is required. The observer faces 

the sun, holds the sextant vertically with his right hand, places an eye, 

E, to the telescope T' (see Figure 214), and so tilts the sextant in the verti- 

cal plane as to see the horizon through the clear half of the horizon glass. 

Because of the fixed position of this horizon mirror described above, the 

observer, by means of the silvered half of the horizon glass, can, at the 

same time, look into the movable mirror for all positions of this movable 

_ mirror. If the movable mirror be turned, by rotating the arm about its 

pivot, the image of the sun can be reflected from the movable mirror 

onto the silvered half of the horizon mirror and into the telescope where 

it can be seen. Before this is done, however, a shade of colored glass, Sh, 

must be turned down between the two mirrors to lessen the glare of the 

sun. 
When the observer has moved the arm so that he can simultaneously 

see the horizon through the clear half and the reflection of the sun in the 

silvered half of the horizon glass, the pointer on the arm will indicate the 

sun’s altitude on the scale. This is because there is a constant relation 

between the angle that is formed by the two mirrors (which is evidently 
proportional to the pointer reading on the scale), and the angle that is 

formed by the ray incident on the movable mirror and the ray reflected 

from the fixed mirror. The particular constant relation here is that the 
former angle is half the latter, as may be seen by the 

THrEorEM: If a ray of light in 

one plane is reflected in succession ~3,R B 
by two mirrors, the angle through M owen 
which the ray is thereby turned e < a ee 
will be twice the angle between the La 7a 
planes of the mirrors. b,/ . p< 

In Figure 215 the light-ray vee ia 
from the sun, 2, is shown re- H ete, XPOS 
flected by the movable mirror, 
M, onto the silvered half of the FIGuRE 215 
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horizon glass, H. The angle at A is then the angle through which the 
sun’s ray has been turned by reflection from the two mirrors. The angle 
at B, formed by the normals to the two mirrors, is equal to the angle 
between the two mirrors. By use of the theorem that “an exterior 
angle of a plane triangle equals the sum of the two remote interior 
angles” and the reflection law that “the angle of reflection equals the 

angle of incidence”’: 

2b=2a+azandb=at+y 
Therefore, 2b=2a+2y=2b-—24+2y 

Hence, x = 2 y, q.e.d. 

By sighting the horizon through the clear half of the horizon glass 

while reflecting the sun’s image into the telescope, the angle between the 
originally incident and finally reflected ray is made to be precisely the 

altitude of the sun. The scale is designed to read twice the angle of in- 

clination of the two mirrors and hence exactly the sun’s altitude. 

16. Observing Altitudes of Fixed Stars 

The sextant is also used to observe the altitude of fixed stars. This 

must be done immediately after sunset or immediately before sunrise 
when both stars and horizon are visible. The procedure here differs 

from that for the sun in but one particular: The order of sighting horizon 
and observed body is reversed. Because of the conspicuousness of the 

sun, the horizon can first be sighted and the sun’s reflection then picked 

up in the movable mirror. This order in the case of a fixed star would be 

difficult because of the many stars and their closeness together. With 

the pointer set to zero on the scale the telescope should first be pointed 

at the star. The reflected image of the star will then actually coincide 

with the image of the star as seen through the horizon glass. Then the 

sextant should be slowly tilted in the vertical plane toward the horizon 

while the arm is so moved that the reflected image of the star remains in 

the mirror half of the horizon glass until the horizon is visible through the 

clear half of the horizon glass. 

17. The Simplicity of the Sextant 

The simplicity of the sextant admirably adapts it for use aboard ship 

where a stable level platform is at best impractical. No spirit levels need 

be adjusted by level screws. The sextant can readily be fixed in proper 

adjustment, as follows. The mirrors must be perpendicular to the plane 

of the limb and the axis of the telescope parallel to this plane. Then all 

that is necessary is that the instrument be held in the vertical plane of the 
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observed body. This can readily be accomplished by tilting the sextant 

slightly from side to side with the result 

that the reflection of the observed body 

will appear to move in a circular arc. 

When this image is at its lowest point 

the sextant is in the vertical plane of the 

observed body. That this is so is due to 

the fact that a reading obtained when 

the sextant is not vertical will always 

be larger than the correct one as is sug- 

gested by Figure 216. 

Sextant observations are usually ac- FIGureE 216 

curate to within 10” of arc. 

The sextant takes its name from the fact that the scale on which the 

altitude is read, the limb, was originally an are of 60° or one-sixth of a 

circle. Since the graduations on this scale read twice the actual arc, 

such a sextant will read angles up to 120° or will allow altitudes to be 

measured from the point on the observer’s horizon on the other side of the 

observer’s zenith from the celestial body. Actually present-day sextants 

read up to nearly 180°, which means that the arc of the limb is nearly 

90°. An octant is a “‘sextant’’ for which the limb is one-eighth of a cir- 

cle and therefore reads altitudes up to 90°. 

18. Plane Trigonometry Uses of the Sextant 

The sextant can also be used to measure the approximate angle sub- 
tended at the observer by any two objects such as headlands, lights, and 

so forth. Such observations give data for plane rather than spherical 

triangle solution. The sextant must be held in the plane determined by 

the lines of sight to the two objects. Then, while sighting on one object, 
through the clear half of the horizon glass, the observer moves the arm 

so that the image of the second object is brought into coincidence with 
the first object in the mirror half of the glass. 

19. The Use of an Artificial Horizon 

Frequently when observations must be made, the horizon is obscured 
by poor visibility or by an island or other land in the direction of sight- 
ing. In this case an artificial horizon is used. This usually consists of a 
dish of mercury shielded from the wind by a glass roof and placed in 
front of the observer in the vertical plane of the body to be observed. 
The mercury acts as a level mirror. With the sextant vertical the ob- 
server sights through the telescope on the artificial horizon and moves 
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nearer to or further away from this artificial horizon until he sees the 
image of the body to be observed reflected from the surface of the mer- 
cury into the telescope. By rotating the arm, the movable mirror can 
be tilted, as before, so as to reflect the body’s image onto the silvered 
half of the horizon glass and from there into the telescope. If the ob- 
served body is the sun, both images must be shielded. Different colored 
glasses are generally used to give two images of the body of different 
colors. When these two images appear coincident in the telescope — 
one reflected directly from the mercury through the clear half of the 
horizon glass, and the other reflected from the movable mirror onto the 
silvered half of the horizon glass and then into the telescope — the 
pointer reading on the scale is double the altitude, as Figure 217 will 

earn Se rg bad irs od 

y Sa ~ M 

i = 

horizontal bee / ee ee 

i horizontal 

dee wenn of nesun 

FIGURE Mrs 

show. The angle marked h, between the observed ray and the hori- 

zontal, is the altitude, by definition. Because of the immense distance 

of the heavenly body from the point of observation, the two rays from 
the body can be considered parallel and hence as making equal angles 
with the horizontal. Therefore, 

angle h = angle a. 

Therefore, the angle between the ray incident on the movable mirror and 

the ray reflected from the horizon glass is double the altitude. But the 
description given above for the real horizon case shows that the pointer 

reading gives the angle between the initial and finally reflected ray. 

Therefore in the case of the artificial horizon the pointer reading is double 

the altetude. 

20. The Bubble Sextant or Octant 

For altitude observations in an airplane the ordinary sextant is of 

limited use. The airplane is frequently above clouds which totally 
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obscure the earth. Whenever the horizon is visible, corrections for 

dip are large and depend on accurate information as to the height of the 

plane. Furthermore, since plane flights are relatively short, it may be 

necessary to take sights on stars at some time in the night other than at 

sunrise and sunset when the horizon and the stars are both visible. Ac- 

cordingly, for airplane observations the sextant is replaced by the bubble 

octant, in which the horizon glass is replaced by a leveling bubble. 

Although the fundamental principles involved in all bubble octants 

are much the same — and are much the same as for the marine sextant, 

with the exception of the additional feature which permits the substitu- 

tion of a leveling bubble for the horizon — the various makes and models 

of bubble octants differ markedly in external appearance. Furthermore, 

in contrast to the marine sextant, the essential working parts of bubble 

octants are so enclosed in casings as to conceal the principles on which ~ 

the instruments operate. Accordingly, instead of a picture of a bubble 

octant, it will be enough here (Figure 218) to present merely a diagram 

of the essential, but hidden, parts of one standard model of the bubble 

octant. * 

When the eye is placed at the eye- ok <3" 

A piece, Hy, the horizon is brought into Er \\ Sh 

the field of vision by simply pointin eee y simply pointing WY 
the lens, Z, to the horizon. The image : L 

of the horizon is then reflected down- Fe 5 aoaeg 

ward by a prism, located at P; behind << Jf = 

this lens, and then upward through rh ke 3 

the eyepiece by another prism, located 5; > ae 4} 
at P,. When the horizon is being Nxt 

observed, these two reflecting prisms 

constitute the counterpart of the hori- Fauna ore f 

zon glass in the marine sextant. 

The index glass is a “transparent mirror,” located at M in the line of 

sight from the eyepiece E, to the second reflecting prism, P2. This mir- 

ror consists of a piece of clear glass through which objects can be seen as 
through a windowpane and from either surface of which objects can be 
seen by reflection when the glass is properly inclined. This index mirror 
rotates about its horizontal axis perpendicular to the line of sight be- 
tween H; and P;. The rotation of the index mirror is controlled by a 
knurled wheel on the outside casing of the instrument, and the amount 
of this rotation is indicated on a dial. 
When the altitude of the sun is being observed, the image of the hori- 

zon being used, the rays of the sun enter the opening, A, strike the upper 
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surface of the index mirror, and are reflected into the eye at A; To 
reduce the sun’s glare, a colored glass shade, Sh, is moved so as to be 
perpendicular to the rays entering A. The altitude of the sun is then 

measured by the amount of rotation of the index mirror (as read on the 

dial) necessary to make the sun’s rays, which are reflected from the up- 

per surface of the index mirror, parallel to the horizon rays, which are 

reflected by the two prisms through the index glass. 

Now, in place of the image of the horizon the image of the leveling 

bubble in the bubble chamber, located at B, can be used. This bubble, 

imprisoned in a glass cell, lies in the line of sight between the two reflect- 

ing prisms, P; and P2. It is illuminated in daylight by light entering the 

lens, L, and at night by a small light operated by a battery concealed in 

the handle of the instrument. The sun’s altitude — or the altitude of 

any other observed heavenly body —is correctly read when the image 

of the sun — or any other observed body — appears in the exact center 

of this bubble when the bubble is free from the sides of its chamber. 

The size of this bubble can be regulated by rotating a knob on the out- 

side of the instrument. 
The system of observing altitudes which is described above — in 

which the eye is placed at E,, the bubble or horizon viewed through the 

transparent index mirror, and the image of the observed body viewed as 

reflected from the upper surface of the index glass — is used when the 

observed body is particularly conspicuous, as is the sun in the daytime 

and the moon at night. For stars the system is reversed: The eye is 

placed at Hs, the star observed directly through the transparent index 

glass, and the image of the bubble is observed as reflected from the under 

side of the index glass. 
Bubble octants can be used at any time during day or night. Un- 

fortunately, largely because of the effect of the acceleration of an air- 

plane on the bubble, altitude observations made with a bubble octant 

in an airplane are, at present, even under the best of conditions, accurate 

to within but three to five minutes of arc. 

_ Part Two: The Chronometer 

21. General Description 

The chronometer is an exceptionally accurate clock, protected and 

handled with great care. It is used aboard ship for keeping Greenwich 

civil time, from which hour angles can be computed on the basis of cer- 

tain celestial observations and the Nautical Almanac. 
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The chronometer is set to Greenwich civil time at an observatory and, 

regardless of the amount of subsequent error, is not again set to this 

~ time until three or four years later when it is returned to the observatory 

for cleaning and resetting. Despite the care in constructing and hand- 

ling a chronometer, it will practically always have a rate of error which 

results, at any given time, in an accumulated error, The usefulness of a 

chronometer depends not upon the size of its accumulated error nor on 

the size of its rate of error but upon the uniformity of this rate. The 

amount of error is frequently checked by radio time signals and the re- 

sults carefully recorded. From these records the rate of error is cal- 

culated for the interval between each pair of consecutive recordings. 

On the basis of these rates the rate of error at any present time is as- 

sumed. From the amount of error at the most recent radio checking 

and the assumed rate of error since that time, the Greenwich time at 

any desired instant can be computed. This is usually done to tenths 

of seconds of time. Chronometers, in specially constructed boxes from 

which they are never removed except to be repaired, can frequently be 

seen in jewelers’ and watchmakers’ windows. 

Because of the importance and delicacy of chronometers they are 

kept at all times in the same protected location aboard ship. When ob- 

servations and computations involving time are to be made, a watch is 

very carefully compared with a chronometer just before (or just after) 

observations and then the observations are timed by the watch. Great 

care is exercised in insuring that the chronometers never run down. 

They are designed to run for fifty-six hours without rewinding, and they 

are wound at the same time every day by the same person who reports 

the winding to the ship’s master on each occasion. On large ships three 

chronometers are carried. The one with the most constant rate of error 
is termed the standard chronometer to which the others are compared. 

On small ships and in airplanes a chronometer watch is used. This is a 

large watch of accurate performance, protected and cared for as are 
chronometers. 

Part THREE: The Azimuth Circle and Compass 

22. Bearings and Azimuth 

The azimuth circle is an attachment to a compass by which the bear- 
ings of terrestrial objects (buoys, lighthouses, ships, and so forth) may be 
observed and by which the azimuths of celestial bodies may be approxi- 
mated. Plane sailing, which requires only plane trigonometry, employs 
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the concept of bearing; azimuth is a spherical trigonometry concept 

necessary in great-circle sailing. Since azimuth can logically be con- 

sidered a particular case — that of a celestial body — of the more gen- 

eral concept of bearings, the more general concept will be considered 
first. 

Derinition: The bearing of an object M from a point O is the direction 

of M from O when M is in the horizontal plane of O, and is the projection 

of this direction onto the horizontal plane of O when M is not in this plane. 

This direction is necessarily described with reference to a standard 

horizontal direction and is the angle at O between the standard direction 

and either the direction of 1, if horizontal, or its horizontal projection, 
if M is not horizontal. 

DEFINITION: When the standard direction is that of the northern part of 

the meridian through O and when the sense of measuring the angle from the 

standard direction is clockwise, the bearing is termed a true bearing. 

To say that the bearing from a ship of a lighthouse is 282° true is to 

say it lies 12° north (geographic, not magnetic, north) of west of the ship. 

DEFINITION: Compass bearings are bearings in which the standard 

direction is the north direction indicated by a magnetic compass. 

This direction will seldom be exactly a true bearing when a magnetic 

compass is used, since the magnetic north pole is over a thousand miles 

from the north geographic pole. A compass bearing, like a true bearing, 

is read clockwise as so many degrees from the indicated north direction. 

DeFInitIion: Relative bearings are bearings referred to the direction of 

motion of a ship, that is, its ‘‘ head.” 

If the ship in the illustration above is sailing northeast, the bearing 

of the lighthouse relative to this head would be 123° westward. If the 

compass bearing of the lighthouse were 72° west, the compass needle 

would be pointing 6° west of true north. 
Comparison of azimuth of celestial bodies with the concept of true 

bearing will show that the azimuth of a celestial body at a given point 

and its true bearing at this point are identical. The terms azimuth and 

bearing of celestial bodies are, accordingly, often used interchangeably. 

23. Compass Cards 

The azimuth or bearing of a celestial body can theoretically be ob- 

served by sighting its line of direction from the point of observation over 

a compass. The angle at the center of the horizontal compass card be- 

tween true north, as is indicated by this compass card, and the horizon- 

tal projection of the line of sight would be the azimuth. The particu- 

lar compass card used may be the card of a pelorus or “dummy com- 
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pass,” which is merely a card set by hand to point north by reference to 

some actuated compass card, or the card of either a magnetic compass or 

a repeating compass of a gyro compass. ‘The mechanics of these fun- 

damental types of compasses are briefly described below. For the pres- 

ent, however, we shall assume that some sort of a circular compass card 

is given which has the following characteristics: 

FIGURE 219 

1. The rim is divided into 360° of are with the principal points of the 

compass marked, that is, north at 0°, east at 90°, southwest at 225°, 

and so forth. 

2. The card is pivoted at its center and forced — by a setting by hand 

in a pelorus, or by magnets in a magnetic compass, or by electrical 

connections with the master gyro compass below decks in a repeating 

compass — to point true north with known corrections. 

3. The card is mounted on top of a bowl in which the card is free to 

turn on its pivot to point north. The bowl is suspended in gimbels so 

that the attraction of gravity will keep the card horizontal despite the 

roll and pitch of the ship. The gimbels consist of two concentric rings 

around the outside of the top of the compass bowl. The outer ring is 

fixed to the ship by a standard. The inner ring is pivoted to the outer 

ring at opposite ends of a diameter, and the compass bowl is pivoted to 

the inner ring at opposite ends of the diameter perpendicular to the diam- 

eter of the pivots between the two rings. (See Figure 219.) In the case 

of the pelorus these gimbels allow the card to be tilted out of the hori- 

zontal in any direction if this is necessary for sighting on objects markedly 
out of the horizontal plane of the card. 

4. On the inside of the bowl just above the compass card is a mark in- 
dicating the direction of the “ship’s head.” This mark is called the 
lubber’s line of the compass. The lubber’s line marks that diameter 
of the bowl which is parallel to the keel of the ship. Hence, the compass 
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reading at the lubber’s line gives the “ship’s head” or compass direction 
of motion of the ship. 

24. Observing Bearings of Terrestrial Objects 

The azimuth circle, a diagram of which is given in Figure 220, is an at- 
tachment to a compass. It consists of a ring, R, which is graduated 
to 360° running counterclockwise (unlike the compass) and has two 
pairs of sighting vanes erected in pairs at diametrically opposite points. 
The azimuth circle fits over the outer edge of the compass and is free to 
be turned around the compass card concentrically with this card. 

FIGURE 220 

Directly above the 0° mark on the azimuth circle is a vertical wire, W, 

in a frame. Diametrically opposite on the 180° mark is a peep sight, 

P.S. To obtain the bearing of an object, an observer turns the azimuth 

circle around so that by sighting through the peep sight he can see the 

object on the vertical wire of the opposite vane. At the base of the 

vertical wire is a right-angled reflecting prism, P:, marked with a line 

agreeing with the vertical wire. This prism reflects the compass card 

onto the observer’s field of vision, so that he sees both the observed ob- 

ject and the compass card at the same time. The position of the verti- 

cal wire on this reflected compass card is then the compass bearing of the 

observed object. By applying whatever correction is necessary to trans- 

form a compass reading to a reading based on true north, the object’s 

true bearing is given. The reading on the azimuth circle opposite the 

lubber’s line on the compass gives the bearing of the observed object 

relative to the ship’s head —as so many degrees clockwise from the 

ship’s head. It also gives the ship’s head relative to the observed ob- 

ject — as so many degrees counterclockwise from the observed object. 
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Figure 221 illustrates the azimuth circle used for observing compass 

bearings of terrestrial objects. 

Prism reflecting 
beari preemie Je EE ry lubber’s line 

Relative bearing 

of object read on 

azimuth circle—> azimuth circle 

compass card 

\ 
observer's eye 

FIGURE 221 

As both the vertical wire and the opposite peep sight are about an 

inch or so in height, it is possible to sight on distant objects which are 

considerably out of the horizontal plane of the compass card. Further- 

more, the bowl can be tipped slightly in the gimbels about that horizon- 

tal axis of the compass card which is perpendicular to the vertical plane 

of sighting. In this way a bearing can be obtained on an object farther 

out of the horizontal plane of the compass card than the sighting vanes 

will accommodate. The azimuth circle is fitted with a level glass, L.G., 

perpendicular to the line of sighting to check against tilting the azimuth 

circle about an axis in the plane of sighting. 

25. Observing Azimuths of Celestial Bodies Other than the Sun 

The azimuths of celestial bodies other than the sun are obtained as are 
the bearings of terrestrial bodies (described above) with the addition of 

reflections of the celestial bodies in a black mirror, This mirror, B.M., 
is horizontally hinged at the base of the vane of the vertical wire and on 

the outside of this vane. The mirror is tilted on its horizontal axis to 

reflect: the particular heavenly body in the black mirror behind the vane 

of the vertical wire. When the azimuth circle is so turned as to place this 
reflection directly behind the vertical wire, the compass reading of this 
wire (as seen by the lighted compass card reflected by the right-angled 
prism at the base of the vane) is the azimuth of the particular heavenly 
body. As only a few stars, all of them relatively bright, are generally 
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FIGURE 222 

used in navigation, little trouble is encountered in reflecting the particu- 

lar star which is to be observed. Figure 222 illustrates the azimuth cir- 

cle as used to observe the azimuths of nocturnal celestial bodies. 

26. Observing Azimuths of the Sun 

For observing the sun’s azimuth a separate pair of vanes is provided 

on the 90° and 270° diameter of the azimuth circle. One of these vanes 

is a concave mirror, C.M., which focuses the sun’s rays across the com- 

pass card into a narrow slit, S, in Figure 220, in the opposite vane. A 

reflecting prism, P2, below this slit casts the sun’s light down onto the 
compass card, making a bright streak of light on the compass card. 

Sir 
— 
=( )a~<—— sun 

Housing containing 
a 45° reflecting 
prism 

concave 
compass Card mirror 

FIGURE 223 

The reading at this streak of light is the sun’s azimuth. Figure 223 il- 

lustrates the azimuth circle for observing the sun’s azimuth. 
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27. Accuracy and Uses of Azimuth Observations 

Since the compass card can be read to but a quarter of a degree at 

best, observed azimuths are only about one-sixtieth as accurate as ob- 

served altitudes. For this reason it is usual to observe altitudes of celes- 

tial bodies and compute their azimuths. Observed azimuths, however, 

are sufficiently accurate for slide rule computations. 

In the problem of determining position by means of a fix from an es- 

timated dead reckoning position (see page 155), the azimuths of the stars 

used in the fix are sometimes observed as an aid in their recognition and 

in checking the reasonableness of the dead reckoning position. How- 

ever, on the chart the azimuth line (perpendicular to which the line of 

position is to be drawn at a distance in nautical miles from the dead 
reckoning position equal to the difference between the observed and com- 

puted altitudes) is the line of the computed azimuth of the observed star. 
Observations of azimuth of celestial bodies from known points of ob- 

servation are useful in determining the compass error. The azimuth of 

a star can be computed from the time of observation and from the posi- 

tion of the point of observation. Comparison of this with the star’s 

azimuth as observed by the azimuth circle on the given compass to be 

checked will give the error. Such a procedure is consistent with the 

limitations in the accuracy of reading the azimuth circle, as this ac- 

curacy is precisely that of reading the instrument being checked, namely, 

the compass. 

28. The Compass 

The compass by itself is not an instrument which yields data for spheri- 

cal trigonometry problems. As the previous sections have explained, 

however, an attachment to the compass, the azimuth circle, does provide 

spherical trigonometry data to a limited extent. Consequently, it seems 

in order to give a brief description of the principles which force the com- 

pass cards, which were mentioned in the description of the azimuth 
circle, to point north. 

29. The Magnetic Compass 

The earth appears to be a huge magnet with its north pole in northern 

Canada at about 70° north latitude and 97° west longitude — more than 

a thousand miles from the north geographic pole. Accordingly, freely 
suspended bar magnets, which are bars of iron that have been “mag- 
netized” or made attractive to all other pieces of iron by having been 
placed in the electromagnetic field surrounding a coil of charged wire, 
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place their north, or ‘north seeking,” poles in the direction of this north 
magnetic pole. Consequently, by fixing bar magnets to the undersides 

of a compass card so that the magnets are parallel to the 0° and 180° 

diameter of the card, the attraction of the earth’s magnetic pole on these 

magnets will make the compass card pivot on its axis so that the 0° mark 
on the card will point in the direction of the magnetic north. Usually 
a liquid which will not freeze at common temperatures is inserted into the 
compass bowl of the magnetic compass to partially float the compass 

card so that it will swing more freely on its pivot. 

DEFINITION: The compass deviation is the correction to be made on a 

given reading of a given magnetic compass to obtain the corresponding read- 

éng referred to magnetic north. 

This correction, due to the ship’s magnetism, induced into the ship 

while it was being built (by lying for a long period of time in one position 

while its metal parts were hammered), is a property of the given compass 

in its given surroundings, and it is a function of the heading of the ship 

and the location of the ship.* This error can be largely compensated for 

by first testing the amounts of deviation for various headings and then 
experimentally placing various magnets and pieces of soft iron in the 

binnacle, or compass mounting, until the tabulated deviations largely 

disappear. Any remaining deviations must be available in tabular form 

so that they can be applied to compass readings to give magnetic readings. 

Derinition: The compass variation is the correction to be made on a 

given magnetic compass reading, previously corrected for deviation, to give 

the corresponding reading referred to true north. 

This correction, due to the magnetic poles’ not being at the geographi- 

cal poles, is a function of location on the earth’s surface. On any given 

chart of a relatively small area the amount and direction of the compass 

variation for this region is shown. 

30. The Gyro Compass. Precession of the Equinoxes. 

When properly adjusted for large changes in the ship’s speed and lati- 

tude, the gyro compass will point to the geographical or true north for 

all headings of the ship and for all positions within the limits of the lati- 

tude adjustment. Magnetic influences do not affect the gyro compass. 

A gyroscope is essentially a body spinning rapidly about an axis of 

symmetry. The gyro compass makes use of the two physical principles 

characteristic of a gyroscope. 

1. The Stability Characteristic. The axis of a gyroscope tends to re- 

main fixed in direction in space unless acted on by a torque tending to 

* Large changes in latitude may change a compass’s deviation. 
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turn the axis out of the direction assumed when the body was first set in 

rotational motion. 

2. The Precessional Characteristic. A torque tending to turn a gyro- 

scope’s axis of rotation about an axis perpendicular to the axis of rota- 

tion will not succeed in this but will cause the axis of rotation to turn 

about the axis perpendicular to the given axis of rotation and the axis of 

torque. The result will be that the axis of spin moves in the direction 

of the axis of torque. This motion of the axis of rotation is called pre- 

cession of the axis. 

summer 
salstice 

torque 

FIGURE 224 

The earth itself is a gyroscope and therefore illustrates both these char- 
acteristics. Because of its considerable mass and rapid rotation on its axis, 
the direction of this axis tends to remain fixed in space — that is, in a direc- 
tion at present closely approximated by the direction from the earth of 
Polaris. But because the earth is not a perfect sphere, since its equatorial 
diameters are larger than the polar diameter, the attraction on this equa- 
torial bulge by the sun and the moon —the moon more than the sun — 
tends to turn the equatorial plane into the plane of the ecliptic. Figure 224 
is a simplified sketch of the sun’s part in this tendency. 

Here the earth’s orbit is represented as a circle with the sun as center. 
A sphere, Sph, is imagined with the sun as center and the earth’s orbit as a 
great circle on it. On this sphere (Sph) is shown the projection from the 
celestial sphere of the intersection on this celestial sphere of the plane of the 
earth’s equator. The earth is then shown, greatly enlarged and with an 
exaggerated equatorial bulge, in three positions in its orbit. For each of 
these positions the direction of the pole of the ecliptic is shown by a line 
marked II. 

The sun’s attraction on the equatorial bulge is greater on the near side 
than on the far side, as attraction is inversely proportional to the squares 
of distances. Thus a torque is set up tending to turn the plane of the equator 
into the plane of the ecliptic. The magnitude of this torque is greatest at 
the solstices and zero at the equinoxes. Arrows, directed according to the 
right-hand screw convention, represent rotation and torque. Then the earth’s 
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axial rotation is shown by an arrow directed northward (the spin axis), 
and the torque is shown by an arrow directed out from the paper for all 
positions of the earth. As a result of the precessional characteristic of the 
gyroscope, instead of the torque’s succeeding in turning the equatorial plane 
into the plane of the ecliptic, the spin avis seeks the torque axis. In Figure 
224, therefore, the spin axis shown for the two solstices tends to tilt out from 
the paper. This tendency immediately makes the equatorial plane tilt so 
that the two solstice positions in Figure 224 would appear slightly farther 
back in their positions, in the orbit of the earth, shown at the extreme left 
and right in this figure. This means that the torque axis in Figure 224 
would turn slightly to the left —in order to keep parallel to the line of the 
equinoxes and perpendicular to the line of the solstices. Since the spin 
axis seeks the torque axis, the spin acts after first tilting out of the paper then 
tilts to the left. 

The continuous action of the above principles results in the spin axis of 
the earth (and therefore the polar axis of the celestial sphere) precessing 
about the pole of the ecliptic, much as the axis of a top — which is another 
gyroscope — with fixed foot precesses about the vertical through the foot. 
The polar axis moves as a generating element of a cone whose center is the 
earth’s center, whose axis is the direction to the pole of the ecliptic, and 
whose semi-vertical angle remains about equal to the angle of the ecliptic. 
This changing of the direction in space of the polar axis does not materially 
change the angle of tilt of the earth’s equator with respect to the ecliptic, 
but it does change the points of intersections on the celestial sphere of the 
ecliptic and the plane of the earth’s equator. These points, the equinoxes, 
are thereby moved backward, or to the west (that is, contrary to the direc- 
tion of the earth’s orbital revolution). This gyroscopic phenomena of the 
earth, which is due to its equatorial bulge, is called the precession of the 
equinoxes. 

Because of the relatively inconsequential size of the equatorial bulge, 
the torque causing precession is very small. The rate of precession is accord- 
ingly very small, amounting to about fifty seconds of arc a year. A complete 
cycle requires about 26,000 years. In 3000 B.c. the star a Draconis was 
a good pole star. In a.p. 13,000 the star Vega will be a fairly good pole 
star. The first point of Aries takes its name from the constellation Aries, 
where this point was located some thousand years ago. Due to the pre- 
cession of the equinoxes the first point of Aries is now in the constellation 

ces. 
ee 224 shows only what the sun does in causing precession of the 

equinoxes. About one third of the precession of the equinoxes 1s due to the 

sun and two thirds to the moon. The moon moves approximately in a plane 

inclined at about 5° with the ecliptic. Consequently, the effect of the at- 

traction of the moon on the equatorial bulge of the earth is generally like 

that of the sun in producing a torque tending to turn the equator into the 

ecliptic. However, since the moon, unlike the sun, does not lie exactly 

in the ecliptic, the attraction of the moon on the equatorial bulge has a 

small torque component at right angles to the ecliptic. This fact accounts 

for the slightly wavy nature (called nutation) of the cone of precession of 

the earth’s axis. 
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The gyro compass is not complicated in principle. However, in 

practice many intricate devices are necessary in the design of a gyTo- 

scope to harness its stability and precession characteristics so that it 

will act as an easily used, as well as an accurate, compass. — Since the 

present aim is merely to understand generally how the principles of the 

gyroscope can be employed to make it a compass, complete descrip- 

tions of the remarkable solu- 

tions of the many engineering 

problems in the actual design et ees 

of a gyro compass will be — mountings 

omitted. The following de- 

scription, which illustrates the 

principles involved, is that of 

a simplified, theoretical gyro 

compass without the compli- 

cating refinements necessary 

for practical use. The need 

for some of these refinements 

will be pointed out at appro- 

priate points with statements 

as to how they can be sup- 

plied. The student can find 

complete descriptions of the 

details of a gyro compass in 

books devoted to this instrument. 

The gyro compass (see Figure 225) consists essentially of a heavy 

wheel, W, around the armature of an electric motor. This wheel is 
mounted in a casing, C, and made to spin with its axis, a, horizontal 

at several thousand revolutions a minute. The casing is pivoted to a 

vertical ring, R, along that horizontal through the center of gravity 

of the wheel and casing which is perpendicular to the axis of the wheel. 

The vertical ring is suspended from supports by a torsionless wire which 

allows the ring and wheel casing to rotate about the vertical axis. 

Attached to the bottom of the wheel casing is a small weight, w, which, 

by the attraction of gravity, tends to keep the axis of the wheel hori- 

zontal.* ‘The rotation of the wheel casing and vertical supporting 
ring about the vertical wire is sensitively duplicated through electrical 
contacts by a frame, called the phantom and labeled Ph, placed around 
the vertical ring on which the wheel casing is pivoted. The compass 
card is placed on this phantom and therefore turns in exact accordance 

* See the refinement of w mentioned in the description of Figure 227. 

WY 

BIO 

FIGURE 225 
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with the turning of the axis of the gyro about the vertical suspending 
wire. 

About three hours before a ship gets under way, the axes of the 
gyro compasses are set by hand to point approximately true north by 
reference to a magnetic compass and the motors are set in motion from 
west to east to agree with the sense of the rotation of the earth. Suppose, 
as is indicated by (1) in Figure 

226, that the gyro compass is in 

northern latitude and that the 

axis is set pointing to a fixed star 
on the horizon a little to the east 

of north. This star will then ap- 
pear to be rising on its westward 

path about the pole. Because of 

the stability characteristic of the 

gyro, its axis will tend to maintain 

its direction in space. As the 

earth rotates, the axis will tend Figure 226 
to tilt upward out of the horizon- 

tal to (2) in order to follow this star.* As soon as the weight w at the 

bottom of the gyro casing is slightly elevated, the earth’s attraction on this 

elevated weight will provide a torque tending to rotate the north end 

of the gyro’s axis downward. The axis of this torque — according to 

the right-hand screw notation— would point westward. Since the 

gyro’s axis points northward, the precessional characteristic of the gyro 

will make the axis precess westward. When the axis has thus passed 
west of north the situation described above is reversed: Imagine the 

gyro’s axis to be pointing directly at a star close to the horizon a little 

to the west of north. This star will then appear to be sinking to the 

east. As the gyro seeks to follow this star its axis will have to tilt 

with the north end down, thereby bringing into play the torque of 

gravity, which now has its axis to the east. Hence, the gyro’s axis 

will precess to the east. The axis of the gyro then successively coincides 

with the elements of an elliptical cone with vertex at the center of the 

gyro and axis of the cone horizontal in the direction of true north. 

About eighty-four minutes are required for the gyro to complete 

* This is, of course, an illusion due to the earth’s axial rotation (see chapter 5). The 

star is fixed in space; and, because of the earth’s axial rotation, the observer’s horizon 

tilts with respect to the line of sight of this star. Hence, instead of the axis of the gyro 

tilting up out of the horizontal, the horizontal is actually tilted down away from the axis 

of the gyro. In any case, the ensuing gravity torque tends to pull the north end of the 

axis of the gyro compass back into the horizontal. 
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a cycle of these oscillations about the geographic north. Hence, unless 

the amplitude of these oscillations is damped, the immediate useful- 

ness of the gyro compass is limited. This damping is successfully ac- 

complished by various refinements. One of these involves removing 

the weight w from fixed attachment to the wheel casing and pivoting 

it to the phantom at points above 7 

the weight’s center of gravity so 

that it tends to hang vertically 

down underneath the wheel casing 

as is suggested in Figure 227.* 

This suspended weight is then at- 

tached to the wheel casing by a pin, 

p. Hence, as soon as the gyro’s 

axis tilts upward in either direction, 

the weight bears against the pin 

on the wheel casing and thereby 

provides the precessing torque. 

By having the pin p mounted 

slightly eccentrically to the wheel 

casing the weight w provides, in 

addition to a precessing torque, a damping torque in the horizontal 

plane. 

The phantom casing containing the gyro wheel is mounted in gimbels 

in the binnacle fixed to the ship, much as a magnetic compass is mounted. 

Because of the complexity and sensitivity of the gyro compass, the 

equipment described above is firmly fixed to the ship in a protected 

room below decks. Repeater compasses are then set up on the bridge, in 

the engine room, and anywhere else desired. These are merely compass 

cards which, by means of electrical relay devices, rotate exactly as 

does the compass card of the master gyro compass. 

31. The Directional Gyro in Aerial Navigation 

The stability characteristic of a gyroscope is used in a much simpler 

type of gyro compass than the above. This is the directional gyro 
used in aircraft where the speeds and banked turns make the magnetic 
compass and the gyro compass impractical. 

The directional gyro consists of a wheel kept rotating at high speed 
by air currents. Being set in gimbels allowing complete freedom of 
motion, its axis maintains its original direction. This direction is 

: * Slots are provided in the vertical supporting ring through which the pivots connect- 
ing the weight w to the phantom can run. 
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compared with a magnetic compass when the airplane is traveling at 
a constant speed on a straight course, and the scale on the directional 
gyro is accordingly set by hand so that thereafter the directional gyro 
will indicate the compass heading of the airplane. The directional 
gyro is unaffected by turns or changes of speed. It is checked with the 
magnetic compass every half hour or oftener. The scale on the direc- 
tional gyro is on a vertical cylinder, part of which is visible through a 
window. The compass heading is the scale reading at the pointer in 
the center of the window. Since the directional gyro does not have 
a horizontal compass card, this compass cannot be used with the azi- 
muth circle. 

32. The Pelorus 

The pelorus is merely a dummy compass. It is a compass card 

mounted in gimbels and can be set by hand as desired. By setting the 

pelorus compass card so that its lubber’s line indicates the same head- 

ing as the magnetic compass card or a gyro repeater card, bearings and 

azimuths can be taken with the pelorus while the ship’s head is main- 

tained. A pelorus is obviously a very simple instrument. When set 

up in an exposed position commanding clear views of the horizon it is 

frequently more useful for observing bearings and azimuths than an 

actual compass card used for steering on the bridge. 

Part Four: The Transit and Its Solar Attachment 

33. General Description of the Engineer’s Transit 

Though generally used to obtain data for problems in plane trigo- 

nometry, the engineer’s transit is used also for observing spherical 

trigonometry data. Its use is confined to observations on land, as the 

instrument must be kept perfectly level. 

Figure 228 illustrates the essential features of a transit. Basically a 

transit is a telescope, 7, mounted on a tripod so that it can be turned in 

a vertical plane about a horizontal axis, H.A., perpendicular to the 

telescope’s axis and also in the horizontal plane about a vertical axis, 

V.A., intersecting the telescope’s axis. These two axes of rotation are 

concurrent with the axis of the telescope at a point which is directly 

over the point —as indicated by a plumb bob — on the earth for 

which the observations are to be made. The amount of rotation in 

each plane — the horizontal and the vertical — is measured on a circu- 

lar scale — H.S. and V.S., respectively — which is provided with a 
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vernier, V. The horizontal circular scale can be set with its zero 

pointing in any desired direction, and the vertical scale can be 

moved sufficiently to keep the 

zero at the pointer when the 

telescope is horizontal. Level 

tubes, L.7'., are mounted on the 

horizontal table on which the 

telescope is mounted to ensure 

that horizontal angles are meas- 

ured in the horizontal plane. 

A level tube, L.T7., is mounted 

also along the axis of the tele- 

scope to indicate the horizontal 

from which the vertical angles 

can be measured. A magnetic 

compass is usually provided and 

is placed on the horizontal plat- Ficure 228 
form on which the telescope is 

mounted. Numerous adjustments must be checked to ensure the 

accuracy of observations. Although these details are of the utmost 

importance when actually making observations, a general description 

of how the transit can be used for astronomical observations will suf- 

fice here. 

34. Altitude Observations with the Transit 

The platform on which the telescope is mounted is first leveled by 

turning leveling screws, L.S. The telescope is then turned on its verti- 

cal axis and inclined on its horizontal axis until the particular heavenly 

body whose altitude is desired is sighted. Further horizontal motion 

of the telescope can then be prevented by a screw. The angle read on 

the vertical circle, through which the telescope has been elevated from 

its level position, is the altitude of the observed heavenly body. When 
the sun is being observed, the observer’s eye must be protected from the 

focused rays of the sun. A dark glass or a prism reflecting the image of 

the sun onto a ground glass face can be used. Or the image of the sun 

and the telescope cross hairs can be focused on a card held behind the 

eyepiece. Altitude observations with the transit can generally be read 
to minutes. A theodolite, which is merely a larger and more accurate 
transit, can be read to ten seconds. 
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35. Azimuth Observations with the Transit 

If the above procedure for altitude observations is preceded by setting 
the zero of the horizontal scale in the direction of true north, then the 
reading on this horizontal scale when the celestial body is sighted will 
be the azimuth of the body. This initial setting of the horizontal scale 
can be accomplished by clamping the platform of the telescope to the 
circular scale when the axis of the telescope is in line with the zero of 

this scale — as shown by the vernier — and then rotating the telescope 
with the horizontal scale fixed to its platform until the telescope is 
sighted in the direction of true north. This latter can be determined 
by sighting on Polaris or on any other star at the instant it is known 

to be on the meridian, by sighting on some station previously estab- 

lished to lie on the meridian, or by setting the zero of the horizontal 

scale to true north by means of the magnetic compass corrected for 

variation and deviation. Azimuth observations can generally be read 

to thirty seconds with the transit and to ten seconds with a theodolite. 

36. The Solar Attachment to a Transit 

A spherical trigonometry problem which frequently arises in surveying is 
that of locating the meridian. The most accurate procedure is to use an en- 
gineer’s transit to sight on Polaris when, by reference to tables from the Nautical 
Almanac, it is known to be at an elongation, that is, at the most eastern or 
most western point on its small circle path about the pole. Then, using data 
from the Nautical Almanac (see Appendix IV), the observer can solve a PZM * 
spherical triangle to give the azimuth of Polaris at this instant (that is, the 
angle through which the transit telescope must be turned from the direction of 
sighting on Polaris to set a stake due north of the point over which the transit 
has been placed).t This procedure involves observations at night and the 
illumination of the cross hairs of the telescope. For daytime observation a 
method nearly as accurate as the one above is that of solving a PZM spheri- 
cal triangle arising from a transit observation of the sun at a known instant 
of Greenwich time and from data in the Nautical Almanac. Though it in- 
volves some loss of accuracy the solution of the PZM triangle arising from a 
solar observation can be obtained automatically by means of an ingenious device 
called the solar attachment to the transit. Although solar attachments are 

now infrequently used (because of the greater accuracy to be obtained by 

logarithmic or hand book solutions of the PZM triangle arising from stellar or 

solar observations with the engineer’s transit), the principles of the solar at- 

tachment are described below for the light that this instrument throws on the 

solid geometry aspects of the PZM astronomical triangle. 

* The standard astronomical triangle whose vertices are a pole, the zenith, and the 

observed celestial body, respectively. 

+ This method of solution of the PZM triangle can be adequately approximated by 

tabulated data from the Nautical Almanac provided in a pocket-sized booklet Solav 

Ephemeris published for Keuffel and Esser of Hoboken, New Jersey. 
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FIGURE 229 

Aside elevation of a standard type of solar attachment to the transit is sketched 
in Figure 229. It consists of an additional telescope mounted on top of the 
transit telescope, 7. The additional telescope is called the solar telescope, S.7’. 
Like the transit telescope, the solar telescope can be turned in azimuth and 
altitude. But, whereas the axis, V.A., about which the transit telescope rotates 
in azimuth is always vertical, the corresponding axis about which the solar 
telescope rotates, the polar axis, P.A., is always perpendicular both to the 
axis of the transit telescope, that is, the line of sight of the telescope, and also 
to the horizontal axis, H.A., about which the transit telescope rotates in alti- 
tude. Consequently, if a point of observation in northern latitude (compare 
Figure 230) is assumed, this polar axis of the solar telescope will point to the 
north celestial pole (from which this axis takes its name) when the transit 
telescope is elevated from the south point on the horizon by an amount equal 
to the co-latitude of the point of observation; and vice versa. The transit 
telescope will, therefore, be put into the plane of the meridian whenever the 
polar axis is pointed to the celestial pole. The polar axis is pointed to the 
celestial pole by means of the solar telescope as is described below. 

In Figure 230 the sun is assumed to have southern declination. When the 
solar telescope is inclined to the polar axis by 90° + the southern declination of 
the sun, the solar telescope can then be made to follow the sun over its entire 
path for the day by rotating the solar telescope about the polar axis, provided 
this axis is directed toward the celestial pole. The converse of this statement 
is also true: When the solar telescope has been placed, by turning the polar axis 
about the vertical axis of the transit telescope, so that in this position of the 
polar axis the solar telescope can follow the sun throughout the day, then the 
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FIGuRE 230 

polar axis will be pointing to the celestial pole. It would obviously be incon- 
venient to check this setting by watching the sun through the solar telescope 
over the sun’s entire visible path for theday. It is furthermore unnecessary to 
do this if the following rule of azimuth order of the two telescopes for northern 
latitudes is obeyed: 

For forenoon observations the solar telescope must point to the left of the transit 
telescope. 

For afternoon observations the solar telescope must point to the right of the 
transit telescope. 
The justification of the rule is immediately seen when it is recalled that when 
the transit is in a position so that the meridian can be located, the transit tel- 
escope is pointing south. The sun must then be to the left of the transit tele- 
scope in the forenoon and to the right in the afternoon. 

TuroreM: Procedure for determining the meridian in known northern 
latitude * by means of the solar attachment to a transit. 

1. If the transit platform is leveled over the point of observation and the tran- 

sit telescope leveled, and 
2. If the solar telescope is inclined out of the horizontal by the sun’s declina- 

tion, d, (below the horizontal, if southern; above the horizontal, if northern) and 

this setting fixed, and 
3. Lf the transit telescope is elevated from the horizontal by the co-latitude of 

the point of observation and this setting fired (see Figure 229), and 

4. If the two telescopes are rotated about the polar axis and the vertical axis, 

respectively, until the sun ts visible in the solar telescope when this solar telescope 

is pointing to the left of the transit telescope in the forenoon or to the right in 

the afternoon, and the transit telescope then fixed in azimuth, (see F igure 230), 

Then: The transit telescope will be in the vertical plane of the meridian. 

Hypothesis 2 is, of course, equivalent to the condition given above, 

* The changes in this procedure for southern latitude are obvious. 
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namely, that the solar telescope be inclined by 90°+ the sun’s southern 
declination with the polar axis. Thus, at this stage the two telescopes are 
inclined to one another by the sun’s declination, the solar telescope point- 
ing down toward the transit telescope for southern declination and up away 
from the transit telescope for northern declination. 

The force of hypothesis 4, which is merely the rule of azimuth order of 
the two telescopes stated above, is that but one observation of the sun is 
necessary. 
Proof: 

1. The north celestial pole must lie on each of two small circles of the 
celestial sphere: 

a. Because the polar axis has been free to rotate around the fixed 
vertical axis, to which it is inclined at the co-latitude of the point of 
observation, the north pole must lie on the small circle with the ob- 
server’s zenith as pole and the co-latitude of the observer as polar 
distance. 
b. Because the polar axis is set to be inclined at 90° minus the sun’s 
signed declination (that is, positive when north; negative when south) 
to the solar telescope, the north pole must lie on the small circle with 
the observed position of the sun as pole and 90° minus the sun’s signed 
declination as polar distance. 

Z=sun. §.T.=solar telescope. P.A.=polar axis. 

Figure 231 

2. These two small circles will, in general, meet in two distinct points, 
Py and P,, (see Figure 231), each of which will then be a point of possible 
direction of the polar axis, but only one of which can be the north celestial 
pole. 

3. By Introduction, 7c, Py and P,, must lie on opposite sides of the 
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great circle, }Z, through the observed position of the sun and through the 
observer’s zenith. 

4. From Figure 231, since the transit telescope must be in the vertical 
plane of either Py or P,, for one of these points the solar telescope must 
be pointing to one side of the transit telescope and for the other point the 
solar telescope must be pointing to the opposite side. Since the rule of 
azimuth order is obeyed when the polar axis is pointing to the celestial pole 
Py, the possibility of the polar axis’s pointing to P, is obviated when this 
rule is obeyed. 

q.e.d. 

Part Fryn: The Radio Direction-Finder 

37. Properties of the Loop Antenna 

When the antenna of a radio receiving station is in the shape of a 

plane loop the intensities of signals received by this antenna are ob- 

served to vary according to the angle at which the oncoming signals 

meet the plane of the antenna. Specifically, the intensity is least when 

the signals are received normal to the plane of the antenna, and the 

intensity is greatest when the signals are received parallel to the plane 

of the antenna. This phenomenon is of use in determining the bearings 

of a ship from a properly equipped radio station receiving signals from 

the ship. The loop antenna of the receiving station is rotated on a 

vertical axis while the ship’s signals are being received until the position 

of least intensity is obtained. Then the direction of the normal to the 

plane of the antenna is that from which the ship’s signals were received. 

The radio station accordingly transmits to the ship the ship’s radio 

bearing, where by 
Derinition: The ship’s radio bearing from the radio station is the true 

compass course of the ship’s signals as received at the radio station, plus or 

minus 180°. 
The radio equipment of such a radio station is termed a radio direc- 

tion-finder. Such stations are established at strategic coastal points. 

At all times, except during the first ten minutes of every hour in clear 

weather, the stations are available to test for fifty seconds the oncoming 

direction of the radio signals of any ship so signaling for this service, 

and then to transmit the ship’s thus determined radio bearings. In 

practice several corrections must be applied to the readings of a radio 

direction-finder to give the correct radio bearing of a signaling ship. 

Radio bearings are accurate to within about 2° and for distances up to 

about 150 miles. 
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38. Great-Circle Paths of Radio Signals 

Since radio signals from a ship to a radio direction-finder station 

travel on a geodesic or minimum distance path on the spherical shell 

immediately surrounding the earth, they follow the great-circle path 

from the ship to the station. Consequently, the radio direction-finder 

is an instrument by which data for spherical triangle solutions may be 

observed. 

For distances of less than fifty miles the ship’s radio bearing from the 

station can be used with adequate accuracy on a Mercator chart to 

draw the ship’s liné of position from the station. Ona Mercator chart 

all straight lines are rhumb lines, that is, lines of constant true bearing. 

The radio bearing of a ship is the direction at the radio station of the 

great-circle path to the ship. However, for distances of less than fifty 
miles there is generally little change in the direction along a great circle. 

For distances of fifty miles or more three procedures are possible in 

using the radio bearing of a ship from a radio station to determine the 

position of the ship: 

1. From the known position of the station and an estimated position 

of the ship apply certain tabulated corrections to the radio bearing 

to give the Mercator bearing; draw this line of Mercator bearing of the 

ship from the station to give a line of position of the ship; repeat this 

procedure for the radio bearing from another station to obtain the 
intersection of two lines of position as the ship’s position. 

2. Draw the radio bearing lines from two stations on radio direction- 

finder charts, which are available for certain localities. These are 

charts on such a projection as to make lines of radio bearings straight 
lines. 

3. Spherical trigonometry solution: Consider the ship as lying on 
that great circle from the station which is uniquely described by the 

ship’s radio bearing from this station. Then by combining this datum 

with that of some other observation, such as a meridian altitude of the 

sun, or a star to determine latitude, or a radio bearing from another 
station, find the ship’s position by the solution of one or more spherical 
triangles. (This procedure, though theoretically possible, is seldom 
used in practice. See problems 13 and 14 in section 38, Chapter 4.) 

39. Radio Direction-Finders on Ships and Planes 

Radio direction-finders can, of course, be carried on ships and planes. 
Then the radio bearing at the ship or plane of a radio station can be ascer- 
tained immediately, which, in the case of a plane, is particularly im- 
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portant, because of the speed with which a plane changes position. 
If a ship carrying a radio direction-finder obtains both its own radio 

bearing from a radio station in known latitude and longitude and also 

the radio station’s bearing at the ship, then the course at both ends of 

the great-circle arc between the ship and station are known, and there- 

fore sufficient data are available for the solution of the s.a.a. ambigu- 

ous spherical triangle. If the solution is unique, or if some additional 

qualitative information is available to dispose of one of two possible 
solutions, the ship’s position can be obtained by the solution of this 
triangle. 

The radio direction-finder on a plane is particularly useful for ‘hom- 

ing,” that is, for directing the plane to a ship or station sending out 

signals. The plane of the loop antenna is kept fixed in a position normal 

to the fore-and-aft axis of the airplane. The plane is then so directed 

that no signals are heard from the home station. In this way the air- 

plane is guided home on the great-circle path. The plane must peri- 

odically be turned off its course to see whether the home station is 

still transmitting. 
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The Nautical Almanac and the 

Air Almanac 

General Description of the Nautical Almanac and the Air Almanac 

Frequent references have been made in the text to the two almanacs, 

the American Nautical Almanac and the American Air Almanac.* 
These publications record the celestial coordinates of the more conspicu- 

ous heavenly bodies, both those which are fixed and those which vary 

according to the argument Greenwich civil time. It is by reference to 

these known quantities, independent of the observer, that an observation 

dependent on the observer can give the otherwise unknown position or 

time of the observation. 

The American Nautical Almanac is much the older publication and 

is standard at sea. It is more accurate and more complete than the 

American Air Almanac, which was first published in 1941 and is standard 

for air navigation. The arrangements of these two almanacs are entirely 

dissimilar. Because the arrangement of the Azr Almanac is such that a 

great variety of celestial problems can be touched upon in a small space, 

all but one of the excerpts which follow are from the Azr Almanac. 

The table on Polaris is from the Nautical Almanac. 

These excerpts from the Azr Almanac include, either directly or by 

inference, the essence of this almanac. The tables involving the cor- 

rections for dip, refraction, etc., have been omitted, as these corrections 

are to be omitted in the problems in this text. In the explanations of the 

Air Almanac, also copied from this publication, the exercises have been 

altered to fit the daily sheet (that for August 1, 1943) here reproduced. 

These changes and an addition in the explanation of the star chart are 

indicated by brackets. Any omission in the explanations is indicated 

by a row of asterisks. A footnote calls attention to the omission of 
certain symbols from the table of stars. 

* Both these almanacs are issued by The Nautical Almanac Office at the United States 
Naval Observatory in Washington, D.C. They are available from the Superintendent of 
Documents, Washington, D.C. The Nautical Almanac is published in one volume for 
each year at sixty-five cents a volume. The Air Almanac is published in three volumes 
(one for each third of a year) at one dollar a volume of four months. Each volume of 
these almanacs is available several months before it becomes current. 
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Permission to reproduce these almanac excerpts has been graciously 
granted by Captain J. F. Hellweg, U.S.N. (Retired), Superintendent of 
the United States Naval Observatory. 

THE AMERICAN AIR ALMANAC 

EXPLANATION AND EXAMPLES 

* * * * * * 

Columns 2-7 of the daily sheets give the Greenwich Hour Angles at 

ten-minute intervals for the Sun, Vernal Equinox, the three planets 

most suitable for observation at that time, and the Moon, and declina- 

tions at ten-minute intervals for the Moon and at hourly intervals for 

the Sun and planets. The magnitudes of the planets are given in the 
headings with their names. 

* * * * * * 

The GHA of a star is found by adding the Greenwich Hour Angle of 

the Vernal Equinox to the star’s Sidereal Hour Angle; i.e., 

GHA * = GHA 7 + SHA * 

On the inside of the back cover [page 242 in book] are given the Name, 

Mag., SHA, Dec.,t and RA of each of the 55 principal navigational 

stars; stars brighter than magnitude 1.5 and Polaris are given in bold 

type [italic type is used in this book.] Two separate lists are given: 

one in alphabetical order, and the other in order of SHA. 

* * * * * * 

[Exampue: For Aug. 1, 1943, at 17" 47”16* find the GHA and Dee. of 

Canopus. 

(From the daily sheet for Aug. 1) GHA 7 at 17" 40” 214° 27’ 

(From table for Interpolation of GHA) GHA 7 Int. 7” 16° 1° 49’ 

(From Star data) SHA * 264° 20’ 

The required GHA * 120° 36’ = 480° 36’ 

(From Star data) The required Dec. $52° 40’ 

The semidiameters of the Sun and Moon and the correction for Moon’s 

parallax are given on the A.M. side of the daily sheets; the values given 

are for 12" GCT and the first’correction value in the parallax table is the 

Moon’s Horizontal Parallax. 

* * * * * * 

+ Dec., or declination, is the equivalent of d in the rest of the text. 
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The diagram on the A.M. side of the daily sheet shows the region of 

the sky along the ecliptic circle within which the Sun, Moon, and planets 

always appear. The positions of the Moon, the five planets, Mercury, 

Venus, Mars, Jupiter, Saturn, and the four bright stars Aldebaran, 

Antares, Spica, and Regulus are shown, except when they are within ae 

of the Sun. The position of the Vernal Equinox (7) is also shown for 

reference. 

The symbols used to show the positions of the various objects also in- 

dicate their appearance. The Moon symbol shows the correct phase, 

and the symbols for the stars and planets indicate brightness or magni- 

tude. The stars are all of the first magnitude and are indicated by the 

symbol *. A planet of first magnitude is indicated by a large dot and 

one of second magnitude by a small dot. Planets brighter than the first 

magnitude are represented by a circle with a number of small marks 

attached, the brighter the object the more marks; magnitudes 0, —1, —2, 

—3, —4 being represented by a circle with 0, 1, 2, 3, 4 marks, respectively. 

The Sun is always shown in the center of the diagram and the attached 

scale shows angular distance from the Sun. The diagram is 360° long 

and actually represents a complete circle around the sky, the two ends of 

the diagram representing the point on the sky 180° from the Sun. 

At any given time only about half the region on the diagram is above 

the horizon. At Sunrise, the Sun (and hence the region near the center 

of the diagram) is rising in the East, and the region at the end marked 

“West” is setting in the West. The region halfway between is on the 

meridian. At the time of Sunset, on the other hand, the Sun is setting 

‘in the West and the region at the end marked “ East”’ is rising in the East. 

[ExampLeE: At sunrise on August 1, 1948, one finds from the diagram 

that the Moon is so far gone in the last quarter as to be invisible. Mars, 

a zero magnitude object, is just east of the meridian. Aldebaran is 30° 

east of the meridian, and Saturn, of zero magnitude, is halfway between 

the meridian and eastern horizon and slightly north of Aldebaran. At 

sunset, on the other hand, one finds Mercury (of magnitude —1) and 

Regulus close to the Sun, and Venus (of magnitude —4) about 40° east 

of the sun. Spica is about 15° west and Antares about 30° east of the 

meridian. The latter will be favorable for observation most of the night. 
Shortly after midnight Mars will rise in the east and be visible until 
dawn.| 

* * * * * * 

Tables for finding the times of Sunrise, Sunset, beginning and ending 
of Civil Twilight, Moonrise, and Moonset for latitudes between 60° S and 
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70° N are given on the P.M. side of the daily sheets. The columns under 
Sunrise and Sunset give the local civil times of these phenomena. The 
columns under Twilight (Twlt.) give the duration of Civil Twilight. Itis 
assumed that morning Civil Twilight begins when the Sun is 6° below the 
horizon and ends at Sunrise and that evening Civil Twilight begins at Sun- 

set and ends when the Sun is 6° below the horizon. The time of begin- 
ning of morning Civil Twilight is obtained by subtracting the duration 

of Twilight from the time of Sunrise; the ending of evening Twilight is 

obtained by adding the duration of Twilight to the time of Sunset. 

Some of these phenomena do not occur in high latitudes during cer- 

tain periods. The symbols used to indicate the exceptions are: 

©, Sun or Moon does not set but remains continuously above the hori- 
zon. 

ma, Sun or Moon does not rise but remains continuously below the 

horizon. 

Xl, Twilight lasts all night. 

When the Sun is continuously below the horizon it may produce Twilight 
for a part of the day; the value then given in the Twilight column is the 

interval from beginning of morning Twilight to meridian passage or 

from meridian passage to ending of evening Twilight, the total duration 

of Twilight being twice the tabulated value. 

* * * * * * 

The columns under Moonrise and Moonset give the Local Civil Time 

of these phenomena for the meridian of Greenwich. Since the times 

of Moonrise and Moonset are usually considerably later on succeeding 

days, it is necessary to interpolate for the longitude of the observer; 

the last column (Diff.) is provided for this purpose. The interpolation 

will, however, not be made when the difference is negative or when it 

does not exist; the symbol * is then given in the Diff. column. 

[Exampue: Find the time of moonrise in longitude 118° W. and 

latitude 32° N. on Aug. 1, 1943. By interpolation it is found that the 

time of moonrise for the meridian of Greenwich and latitude 32° N. is 

5’ 22™. From the Diff. column it is found that the time of rising will 

be 53” later the following day. Since 118° is about one-third of 360°, 

one adds 18”. 

5} 22" + 18" = 54 40" LCT.] 

* * * * * * 
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The LCT found in the [above] is the local time for the observer’s 

local meridian. GCT is obtained from the LCT by applying the ob- 

server’s longitude from Greenwich; the longitude is first converted from 

arc to time and then added to the LCT for an observer in west longi- 

tude or subtracted for an observer in east longitude. 

[Examp.y: Change 5’ 40” LCT in longitude 118° W. to GCT. 
Longitude 118° W. converted to time is longitude 7* 52" W.; 

5h 40" LOT + 74 52™ = 13* 32" GCT.| 

The tables, Interpolation of GHA, Dip, Polaris, Cs Par. and Corr. 

HA G are the so-called “critical” or “turning point” type; i.e., the 

values of the argument given are those for which the function changes 

from one unit to the next. The value of the function is therefore 

found to the nearest unit without interpolation. If the required value 

of the argument is one of the printed values of the table, the upper of 

the two adjacent values of the function should be taken. 

The error of an interpolated GHA is never as great as 1’.8, and the 

average error is about 0’.5, except for those circumpolar stars whose 

SHA’s are enclosed in parentheses. f 

T See footnote, page 130, and also Appendix II, page 221. 
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282 06 
284 36 
287 06 - . 
289 37 
292 07 
294 37 N14 59 
297 07 
299 37 
302 07 - . 
304 37 
307 08 

309 38 N15 00 
312 08 
314 38 
317 08 - 
319 38 
322 08 
324 39 N15 00 
327 09 
329 39 
332 09 - 
334 39 
337 09 
339 39 N15 01 
342 10 
344 40 
347 10+ 
349 40 
352 10 

354 40 N15 01 
357 11 
359 41 

211 
441 
JORG! 
9 41 

12 11 
14 42 
17 12 
19 42 
22 12 
24 42 
27 12 
29 42 
32 13 - 
34 43 
37 13 

39 43 N15 02 
42 13 
44 43 
4713+ 
49 44 
52 14 
54 44 N15 03 
57 14 
59 44 
62 14- 
64 45 
67 15 
69 45 N15 03 
72 15 
74 45 
77 15+ 
79 45 
82 16 

84 46 N15 04 

SATURN 0.3 

GHA Dec. 

° ’ ° , 

226 42 N21 55 
1 229 13 

231 43 
23413- 
236 44 
239 14 
241 44 N21 55 
244 15 
246 45 
249 16- . 
251 46 
254 16 

@ MOON 

GHA Dec. 

199 56 
202 21 - 
204 46 
207 12 

256 47 N21 55/209 37 N17 44 
259 17 
261 47 
264 18- : 
266 48 
269 18 

212 02 
214 28 
216 53 - 
219 18 
221 44 

43 
42 
41 
41 
40 

271 49 N21 55/224 oo N17 39 
274 19 
276 50 
279 20 - 
281 50 
284 21 2 
286 51 N21 55): 

2 289 21 
291 52 
294 22- . 
296 52 
299 23 2 
301 53 N21 55 
3 9 

316 55 N21 55 
319 26 
321 56 
324 26 - 
326 57 
329 27 
331 58 N21 55 
334 28 
336 58 
339 29 - 
341 59 
344 29 
347 00 N21 55 
349 30 
352 00 
354 31 + 
357 01 
359 32 

2 02 N21 55 
4 32 
7 03 
9 33 - . 

12 03 
14 34 
17 04 N21 55): 
19 34 
22 05 
24 35 + . 
27 06 
29 36 
32 06 N21 55/340 25 N16 re 

296 48 N17 
299 14 
301 39 
304 04 - 
306 30 
308 55 

333 09 
335 34 
337 59 

342 50 
345 15 
347 41 + 
350 06 
352 31 

= 
© 
S 



GREENWICH P.M. 1943 AUGUST 1 (SUNDAY) 

© SUN 7 |VENUS—4.2| MARS 0.2 | SATURN 0.3 Moon- q 

GHA Dec. |GHA| GHA Dec. |GHA Dec.| GHA Dec. 3 rise |Q 

° , ° , ° , ° / ° / ° ta ° f 

358 26 N18 11/129 13/322 15 N 2 30| 84 46 N15 04 
0 56 131 44/324 45 87 16 hm\|m 

3 26 134 14/327 15 89 46 1 57| 99) 

5 56 - + 1136 45/329 46 - -| 92 16- . 2 35| 87 

8 26 139 15/332 16 94 46 3 02| 79} 

10 56 141 45/334 46 97 16 22| 75) 

13 26 N18 10/144 16/337 16 N 2 29] 99 47 N15 04 39} 70) 

15 56 146 46/339 47 102 17 3 53] 68 

18 26 149 17/342 17 104 47 4 04| 66 

20 56 - + |151 47/344 47 - + |107 17 - . 14] 65. 

23 26 154 17|347 17 109 47 24| 62 

25 56 156 48/349 48 11217 31] 62 
28 26 N18 09/159 18/352 18 N 2 28/114 48 N15 05 39} 60 
30 56 161 49/354 48 117 18 4 54| 57 

33 26 164 19/357 18 > 119 48 5 07) 55 

35 56 + -{166 50/359 49 - - |12218- . 17| 54 

38 26 169 20; 219 124 48 26] 53 
40 56 171 50} 449 127 18 43) 49 

5 56| 48 
43 26 N18 09|174 21| 7 20 N 2 27/129 48 N15 05 
45 56 176 51} 950 132 19 6 10} 46 
48 26 179 22] 12 20 134 49 
50 56 - + |181 52] 14 50 - - |137 19- - 23) 43 
53 26 184 22] 17 21 139 49 37| 41 
55 56 186 53] 19 51 142 19 6 53) 39 
58 26 N18 08]189 23] 22 21 N 2 26)144 49 N15 06 7 02| 38 
60 5 191 54} 24 51 147 19 12) 36 
63 26 194 24] 27 22 149 50 25| 34 
65 56 + + 1196 54] 29 52 - + 1152 20- 40| 31 
68 26 199 25} 32 22 154 50 47| 30 
70 56 201 55} 34 52 157 20 7 54| 29 
73 26 N18 08/204 26] 37 23 N 2 25|159 50 N15 06 8 03) 27 
75 56 206 56} 39 53 162 20 13| 25 
78 26 209 26] 42 23 164 50 8 24] 23 
80 56 + + 1211 57| 44 54- + 1167 21- . 
82 26 214 27| 47 24 169 51 
85 56 216 58} 49 54 172 21 

88 26 N18 07/219 28] 52 24 N 2 24/174 51 N15 07 al ean el eee 
90 56 221 59] 54 55 177 21 Moon-| & 
93 26 224 29) 57 25 179 51 set | 6 
95 56 - + 1226 59| 59 55 - + {182 22 - =—s 
98 26 229 30] 62 25 184 52 

100 56 232 00} 64 56 187 22 km\m 
103 26 N18 06/234 31] 67 26 N 2 24/189 52 N15 07 22 03| * 
105 56 237 01] 69 56 192 22 21 37| 04 
108 27 239 31] 72 26 194 52 16] 11 
110 57+ - (242 02] 7457- - |197 22. ; 21 00! 15 
113 27 244 32) 77 27 199 53 20 46] 18 
115 57 247 03| 79 57 202 23 34| 29 
118 27 N18 06/249 33] 82 28 N 2 23/204 53 N15 08 25| 23 
120 57 252 03) 84 58 207 23 16] 25 
123 27 254 34| 87 28 209 53 08! 27 
125 57 - - [257 04] 8958- «(212 23. : 20 01] 28 
128 27 259 35} 92 29 214 53 19 55] 29 
130 57 262 05] 94 59 217 24 41| 32 

133 27 N18 05/264 36] 97 29 N 2 22/219 54 N15 08 pt oa 
135 57 267 06] 99 59 222 24 19 12] 38 
138 27 269 36|102 30 224 54 18571 41 
140 57 » + 1272 07/105 00 - + |227 24. . 44| 43 
143 27 274 37|107 30 229 54 
146 57 277 08/110 00 232 24 32| 45 
148 27 N18 04/279 38]112 31 N 2 21/234 55 N15 09/197 30 
150 57 282 08/115 01 237 25 20| 47 
153 27 284 39/117 31 , 239 55 18 07| 50 
155 57 - + }287 09/120 02 - - 1242 25. . 17 52] 52 
158 27 289 40}122 32 244 55 43] 54 
160 57 292 10}125 02 247 25 33) 56 
163 27 N18 04/294 40/127 32 N 2 20/249 56 N15 09/212 32 21| 59 
165 57 297 11}130 03 252 26 07] 61 
168 27 299 41/132 33 254 56 17 01| 62 
170 57 - + 1302 12}135 03 - + |257 26 - . 16 53] 64 
173 27 804 42]137 33 259 56 45| 65 
175 57 307 13}140 04 262 26 35) 68 

178 27 N18 03/309 43/142 34 N 2 19]264 56 N15 10/227 35 N21 55\169 24 N15 40/S 6 



INTERPOLATION OF GHA 

SUN, PLANETS, T 

Int. Corr. Int. Corr. Int. Corr. 

ee aU an” ie) epee eed 

00 om 0 00 03 a 0 50 06 A 1 40 
or 0 OL oy 0 51 45 14 

0 02 28 9 52 1 42 
08-0 03 $9 0 53 43.1 43 
12 0 04 350 54 re 1 44 
Z7 0 05 770 5D Reet 
oy 0 06 45 0 56 or 1 46 
30 0 07 4, 0 57 Foal at 
$3 0 08 #0 58 aos 
7 9 09 72 0 59 paler 

Hoi 04 OL y oF 24 By 
0 12 1 02 1 52 

#30 13 Ee as eas) 
720 14 an gid = 1 84 

0 15 1 05 1°65 
O1 Ol 9 16 21 1 06 41 1 56 

O50 $7 ey R07 a 1 57 
7. Oe e108 #71 58 
170 19 7 108 15D 
270 20 74 1 10 he 2 00 
oO Hk gy 11 eoml 
oo 0 22 ete’: fy B02 
29 0.28 ager 0? 2 03 
ae! eee 17 9504 

0 25 1 15 2 05 
41 9 96 06 OL 1 16 21 9 06 
40 27 oe TRY, ecet07 
£2 0 28 aye 2, 208 
730 29 el e200 

oi ae fh120 a7 2 10 
0 31 1 21 41 9 44 

oom 99 1 22 fg 2 12 
De ey ag tier age 
I 0 35 af 1 25 eae 
oy 0 36 g% 1 26 ae. (6 
2 Oat ee yeaa 
oe 0.38 gee 28 
= 0 30 rahe 7 249 

0 40 1 30 2 20 
v7 0 41 et ual el 
49,0 42 poileez 99 2 22 

0 43 1 33 2 23 53 18 33 

os o1 9 #8 Ohere ieee 0 46 1 36 2 26 05 26 1 37 #9 97 
07 0 48 Arak fq 2 28 
iy 0 49 37 1 39 5y 2 29 
97 0 80 71 1 40 see 

Correction to be added to GHA for interval of GCT 



Order of SHA 

Name Mag SHA Dec SHA Dec. RA Name 

° , ° , ° , 2 i hm 

Acamar...... 3.4 315 59 $40 32 14 31 N14 54 23 02 Markab 
Achernar..... 0.6 336 06 S57 31 16 22 S29 66 22 66 Fomalhaut 
ACTuUd..se.s-. ihe 174 08 | S62 47 28 50 $47 14 | 22 05 | Al Na’ir 
Adhara.. 2... 1.6 255 54 S28 54 34 39 N9Q 37 21 At Enif 
Aldebaran wie 291 650 N16 24 50 O7 N45 06 20 40 Deneb 

Aliothists.c 3 sie wz 167 07 N56 16 54 42 S56 55 20 21 Peacock 
PAV NG IF <5 eer 2.2 28 50 S47 14 63 00 N8 43 19 48 Altair 
Alnilam...... 1.8 276 40 S1 14 77 04 $26 22 18 52 Nunki 
Alphard...... 22 218 48 88 25 81 14 N38 44 18 36 Vega 
Alphecca..... 2.3 126 56 N26 54 84 54 $34 25 18 20 Kaus Aust. 

Alpheratz..... 2.2 358 38 N28 47 91 10 151 30 17 55 Etamin 
Al Suhail..... 2.2 223 32 S43 12 96 55 N12 36 17 32 Rasalague 
AWG. s< oi 0 0.9 63 00 N8 43 97 33 S37 04 17 30 Shaula 
Antares...... 1.2 113 31 S26 18 103 13 $15 39 17 . 07 Sabik 
Arcturus... 0.2 146 44 N19 29 | (109 20) S68 56 16 43 a Tri. Aust 

GATE UBiera 2 sel 7 234 40 S59 20 113 $1 S26 18 16 26 Antares 

Bellatrix...... 17 279 29 N6 18 120 45 $22 28 15 57 Dschubba 
Betelgeux..... .1-1.2 | 271 49 NZ 2 126 56 N26 54 15: 32 Alphecca 
Canopus 0.9 264 20 S52 40 (137 17) N74 24 14 51 Kochab 
Capella. see 0.2 281 53 N45 656 141 O4 S60 36 14 86 Rigil Kent. 

Caphiye nettle 2.4 358 28 N58 50 146 44 N19 29 14 18 Arcturus 
6 Centauri.... 2.3 149 10 $36 06 149 10 $36 06 14 03 6 Centauri 
B Crucis...... 1.5 168 54 $59 23 159 27 S10 52 13 22 Spica 

Crucis 1.6 173 00 $56 48 159 35 N55 14 is 22 Mizar 
eneO selene 1.3 50 O07 N45 05 167 O07 N56 16 12 62 Alioth 

Deneb Kait 2, 349 49 S18 18 168 54 $59 23 12 44 8 Crucis 
Denebola..... 2.2 183 28 N14 53 173 00 856 48 12. 28 y Crucis 
Dschubba.... 2.5 120 45 $22 28 174 O08 S62 47 12 238 Acruz 
Dubhe. sic. 2.0 194 57 N62 04 183 28 N14 53 11 46 Denebola 
OU Gigangnadr 2.5 34 39 N9 37 194 57 N62 04 12700 Dubhe 

Etamin...... 2.4 91 10 N51 30 208 40 N12 16 10 065 Regulus 
Fomalhaut : 13 16 22 S29 66 218 48 S8 25 9 25 Alphard 
iMiamplleeeie 2.2 329 01 N23 12 |.(@21 652) S69 29 es} Miaplacidus 
Kaus Aust... . 2.0 84 54 S34 25 223 32 S43 12 9 06 Al Suhail 
Kochab...... 22 (187-17) | N74 24 234 40 S59 20 8 21 e Argus 

Marfak...... 1.9 309 56 N49 39 244 88 N28 10 7 42 Pollux 
Markab,..... 2.6 14 31 N14 54 245 55 N65 22 (fg Procyon 
Miaplacidus 1.8 (221 52 S69 29 255 54 S28 54 6 56 Adhara 

IZAL.. 6.55. 2.4 159 35 N55 14 259 21 S16 88 6 43 Sirius 
nk vee. 2.1 77 04 S26 22 264 20 S52 40 6 28 Canopus 

Peacock...... 2.1 54 42 $56 55 271 59 NT St & 52 Betelgeux 
WROLAIS earache 2.1 (8383 61) N8&8& 659 276 40 S1 14 5 33 Alnilam 
ROWUB ee ne 6 ks 1.2 244 83 N28 10 279 29 N6 18 5 22 Bellatrix 
IPFOCYON e eceae 0.5 245 65 NS 8 281 53 N45 656 &§ 12 Capella 
Rasalague.... 21 96 55 N12 36 282 038 SS) Fé 6 12 Rigel 

Weguluss « snk 1.8 208 40 N12 16 291 50 N16 2 83 Aldeba 
igel emer cite 0.3 282 O03 S8 16 309 56 N49 36 4 20 Marfak 
Rigil Kent. ... 0.3 141 O4 S60 36 sis 59 S40 32 2 56 Acamar 
Ruchbah..... 2.8 339 29 N59 56 329 O1 N23 12 2 04 Hamal 
abi sprees 2.6 103 13 S15 39 | (883 61) | N88 659 LA £5 Polaris 

Shaula... ny ¢ 97 33 837 04 836 06 S57 $81 1 86 Ach 
Strius..... 1.6 259 21 S16 388 339 29 N59 56 122: Ruchibak 
SPICEli Mele es 1.2 159 27 S10 6&2 349 49 S18 18 0 41 Deneb Kait. 
a beet Aust.. 1.9 (109 20) S68 56 358 28 N58 50 0 06 Caph 
Wega akan. 0.1 81 14 N88 44 358 38 N28 47 0 05 Alpheratz 

SHA = 360° — RA GHA* = GHA ft + SHA* May-Aug., 1943 

Note: Certain ‘‘index numbers’’ and cross reference sym- 
bols have been omitted from the first column of this table. 



POLARIS, 1943 
APPARENT PLACE, TIME OF UPPER CULMINATION, AND TIME 

INTERVAL BETWEEN UPPER CULMINATION AND 

ELONGATION EAST OR WEST 

[From the Nautical Almanac} 

The local civil time of culmination on any meridian for a given date 
is found by taking from the following table the Civil Time of the nearest 
Greenwich culmination and reducing it to the given date by means of 
the Var. per Day, and to the longitude of the given meridian by means 
of the Var. per Hour. 

The time interval between upper and lower culmination is 12 dimin- 
ished by one-half the numerical value of the Var. per Day. 

The last column below applies to all meridians. 

Upper Culmination, Meridian of Greenwich Meee 

ivi . Interval, 
= eviasone ae Elongation 

ed Sees Apparent ea Var. per Var. per minus 
ftv Declination Civil Time Day Hour Upper Culm. 

hm o F 

1 43 +88 59 hae a wy A 

8 Li hm 3 m 8 8 - hm 

. 08 128 50.9 LUNG, Stile 57.00 Ie —9:88--) | a0 +5 58.3— 
2 108 116 52.1 18 27 20 yon 9.88 12 5 58.2 

20.7 104 52.7 17 47 48 3 57.2 9.88 14 5 58.0 
30.7 91 52.7 C7 S17 Seb val 9.88 16 5 57.9 

Feb. 9.7 79 51.9 16 28 45 3 57.1 9.88 18 5 57.7 

19.7 68 50.6 1545 e1 bel 3157.0 |) — 987-1 e200 +5 57.6— 
Mar. 1.6 57 43.7 15 9 46 3 56.8 9.87 22 5 57.4 

11.6 49 46.4 14 30 18 3 56.7 9.86 24 5 57.2 
21.6 42 43.6 13 50 53 3 56.4 9.85 26 5 57.1 
31.5 38 40.6 13 11 29 3 56.2 9.84 28 5 56.9 

: 3 37.5 12.3258, = 356.0) || — 9.83. || 30 +5 56.7 — 
ria 20:8 36 34.4 1l 52 49 3 55.8 9.82 32 5 56.5 

30.5 39 31.4 1113;-33 3 55.5 9.81 34 5 56.3 
May 10.4 44 28.6 10 34 18 3 55.3 9.81 36 5 56.1 

20.4 50 26.2 955 6 3 55.2 9.80 38 5 55.9 

: 59 24.1 aR aS | ay ie) |) aes |) 20 +5 55.7 — 
June 204 68 22.4 8 36 46 3 54.9 9.79 42 5 55.4 

19.3 79 21.3 7 57 38 3 54.8 9.78 44 5 55.1 
29.3 91 20.7 7 18 30 3 54.7 9.78 46 5 54.9 

‘July 9.3 103 20.6 6 39 23 B 64.7 9.78 48 5 54.6 

21.0 CORT T 30 bAl ie 29078 120 | 50 +5 64.2 — 
39.2 128 22.0 5 21 10 3 54.7 9.78 52 5 53.9 

Aug. 8.2 140 23.5 442 3 3 54.8 9.78 54 5 53.5 
e igo 151 25.5 4 2 55 3 54.8 9.78 56 5 53.1 

28.1 162 27.9 3 23 46 3 54.9 9.79 58 5 52.6 

: Sete BN Ga a) || —eyeea |) Ge SETS Is 
prs Wi 149 33° 2 5 25 3 55.2 9.80 62 5 51.5 

27.1 186 37.2 1 26 13 3 55.3 9.81 64 5 50.8 
Ost. 7.0 191 40.8 0 46 59 3 55.5 9.81 66 5 50.0 

17.0 194 44.5 0 7 43 3 55.7 9.82 68 5 49.1 

5 48.3 23 28 25 | —3 55.9 | —9.83+ | 70 +5 48.0 — 
Nov. ae ibe 52.1 22 49 5 3 56.1 9.84 

* 45.9 192 55.7 22 9 43 3 56.3 9.85 
25.9 187 59.2 21 30 20 3 56.5 9.85 

Dec. 5.9 180 62.3 20 50 54 3 56.7 9.86 

65.0 20 11 26 | —3 56.8 | —9.87+ 
3B 103 67.2 19 31 57 3 57.0 9.87 
35.8 150 68.8 18 52 27 | —3 57.1 | —9.88+ 



244 APPENDIX IV 

NAVIGATIONAL STAR CHART 

The purpose of the Star Chart facing this page is to assist the navi- | 

gator in identifying stars for navigation. The stars of each constella- 

tion are connected by dotted lines; the bright stars are identified by 

their Greek letters and the principal stars by their common names, 

The Sidereal Hour Angle and declination of each star can be determined 

from the map by means of the network of vertical and horizontal lines 

drawn upon it for this purpose. The SHA’s are measured (0° to 360°) 

from the vertical line passing through the Vernal Equinox at 0°. The 

declinations are méasured North and South (N 90° to § 90°) from the 

celestial equator which is represented by a heavy horizontal line through 

the center. 

The user of the star chart should be forewarned that the rectangular 

shape of the chart distorts the relative positions of the stars in the polar 

regions. A globe would give a better representation, and an observer 

from the inside would see the constellations as they appear in the sky. 

Then the SHA lines would converge at the North and South poles and 

the equator and ecliptic would be in the form of circles. 

[Any strangeness due to the eastern edge of the chart’s being on the 

left of north will be dissipated by holding the chart overhead with 

the northern edge toward Polaris.] 

An observer’s local meridian is easily located on the chart since it 

coincides with the vertical line whose GHA is equal to his longitude. 

GHA is not given directly on the chart but may be readily obtained 

from the SHA which is given. For any given instant GHA may be 

obtained from SHA by adding the GHA Y from the daily sheet: 

GHA = SHA + GHA Tf 
Conversely SHA = GHA-— GHA T 

[EXAMPLE: Locate on the chart the local meridian of an observer in 
longitude 63° E. on Aug. 1, 1943, at 18' 10" GCT. Since his longitude 
is 63° E., the GHA of his meridian will be — 63° or 297°. From the 
daily sheet for Aug, 1 at 18* 10" the GHA = 222°. The SHA of 
his meridian will therefore be 297° — 222° = 75°.] 

The identification of a star directly overhead; i.e., in the zenith, 
is easily made since the point overhead is on the local meridian and also 
has a Dec. equal to the observer’s latitude. 

[Examptu: Assume that the observer in the above example is in lati- 
tude 40° N and that a star in the zenith is to be identified. The SHA 
of the star is exactly equal to the SHA of the local meridian and was 
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NAVIGATIONAL STAR CHART 245 

found to be 75°. The star’s Dec. is N 40° since the observer’s latitude 
is equal to the Dec. of a point in the zenith. 

Examination of the chart in the region of SHA = 75° and Dec. N 40° 
shows the brightest star in the region to be the first magnitude star 
Vega. To verify, this region of the chart may be compared in detail 
with the sky. One finds the conspicuous star Altair 30° south and a 
little east of the zenith.] 

A star to the North or South of the zenith is easily identified because 
its angular distance from the zenith is equal to the difference between 
its declination and the observer’s latitude. [Thus, in the above example, 
Nunki (Dec. 8 26°) would appear about 66° south of the zenith or at 
an altitude of 24°.] 

* * * * * * 

The Ecliptic, which if shown in the diagram on the daily sheet would 

be a straight line, is represented on the chart by a curved dotted line. 
The four bright stars of the diagram are easily found on the chart as 

they lie along the Ecliptic. The Sun, Moon, and planets may be plotted 

on the chart by means of their SHA and Dec. 

[ExAMPLE: The daily sheet for Aug. 1, 0” GCT gives GHA Mars = 

265°, GHA Tf = 309°, and Dec. Mars = N 15°. This gives SHA Mars = 
—44° = 316°. Plotting SHA and Dec. places Mars on the Ecliptic 

about 20° west of Aldebaran, which agrees with the daily diagram.] 





Answers to Odd Problems 

(Tables used have been Useful Tables: H.O. No. 9, Part II; United States 
Government Printing Office, Washington, D.C. Interpolation has arbitrarily 
been performed always from the smaller angle, and supplementary angles have 
arbitrarily been found always directly from the tables. For angles between 
0° and 40’ the relations 

tan @ = sin 6 = (number of minutes in @)(sin 1’) 
have been used. Other tables and other conventions may lead to answers 
differing from those below by a few seconds. The term “Odd Problems” 
refers to (1) all odd-numbered problems having but one part and (2) all odd 
parts of odd- and even-numbered problems when all the parts are of the same 
type of problem.) 

Section 10, pages 48-49. (1) cos7(1/+/3) = 54°44’. (3) cos—1(—+/3/4) 

= 115° 40’, cos~1(— 5/8) = 128° 41’, cos-1(21/3/5) = 46° 09’. 
Section 13, pages 53-54. (1) 150°. (3) Leg: 45°; Angles: 60°, cos3(+/6/4). 

(9) 45°, 135°. 
Section 15, pages 58-59. 3 (a) a = 28°00’, b = 168° 50’, B = 157° 12’. 

(c) a = 121° 10’, B = 41° 20’, c= 114° 25’. (e) a= 114° 50’, A = 107° 56’, 
Betas 50. 4(a) A= 82° 23’ 34", B= 20°08 18”, c= 68° 38’ 28”. 
(c) a = 51° 33’ 38”, b = 30°51'08”, c= 57° 44’ 33”. (e) a = 00° 14’ 18” 
me a Lp 23-5) = 175° 48 34", 

Section 18, pages 67-68. (1) Hypotenuse: 45°; Leg: sin(1/2/4) in II; 

Angle: 150°; Hypotenuse: 135°; Leg: sin—(1/2/4) in I; Angle: 30°. 
3 Hypotenuse Leg Angle 

(a) 64° 15’, od ee AAU 
115° 45/,. 118° 45’, 103° 00’. 

(c) 09° 50’, 09° 05’, 67° 45’; 
1700105 1707 bs A128 

(e) 90° 00’, 90° 00’, 90° nh 
4 Hypotenuse Leg Angle 

(a) 57° 12/ 1,42 bi 18", (5e" 00" 4B": 
122° 47’ 44”, 137° 02’ 40”, 125° 50’ 13”, 

(c) 61° 55’ 26’, 178° 14’ 10’, 172° 19 44”; 
118° 04’ 35”, 06° 45’ 47”, 07° 40’ 14”. 

(e) 9e7.37 02", 05° 04 26", 12° 47 41"; 

156° 27’ 58”, 174° 55’ 39”, 167° 12’ 18”. ; 
5 (a) A =c= 90°, b = 132° 14’ 47”. (c) No solution. (e) No solution. 

(a= c= A = 90°; (i) No solution. (k) b = 55° 20’, A= 182° 55, 

B= 65° 20% 

Section 21, pages 70-71. (1) Vertex angle: 90°; Base angles: cos *(1 /x/3) 

= 54°44’, (3) cos(1/2/3) = 61° 52’, cos (1/6) = 80° 24’, cos“(— 4/2/4) 
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= 110° 42’. (5) cos-#(1/3) = 70°32’. (7) Sides: cot-*(1/3/2) = 49° 09’, 

cot-'(— 1/+/6) = 112° 12’, Angle: cos-1(+/2/4) = 69° 18’. (9) 0.347. 
10 (a) A = 33°00’, B = 45°18’, C = 147° 00’. (c) A= B= C = 187° 08. 
(e) A = 127° 00’,b = ¢ = 67° 54’. (g) By = 25° 20’, c, = 39° 50’, Ci = 15° 55’; 
Bz = 154° 40’, c2= 140° 10’, C2 = 164°05’. 11 (a) A = 42° 54'16", B 
= 45° 5 55’ 7: bs = 161° 44’ 00’’. (c) A = 150° 537 04”, b =Cc= 151° iY (2% 

(e) a= ee = c= 31°41’ 24”. 

Section 23, pages 72-73. 4 (a) a= A=c= 90° (c) Nosolution. (e) No 

solution. (g) A= pant 55’, b= 44°20) c= 123915’. (i)a=c= 90°, 

B= 16°22’. 5(a)b=B= =¢c= 90°. (c) ae 05° 19’ 58”, ¥s == Sh 2 00”, 

c¢; = 167° 29°16"; b2= ee 40’ 04”, Bz = 154° 36’ 00”, = [2 oe. 44’. 

(e) No solution. (g) A = 137° 13’2 22”, Fe le aes 10”, é= 82° oi GS, 
(i) a = 124° 30’ 21”, b = 76° 29’ 33”, B = 78° 48’ 12”. 

Section 26, page 80. 1 (a) A = 79° 30’, b = 50° 50’, C = 44°20’. (c) A 
= 41°10’, B= 131°51’, c= 34°30’. (e) A = 90°00’, B= 110° 25’, c= 
120° 20’. 2 (a) A = 38° 26’ 58”, b = 41° 44’ 27”, C = 88° 27'02”. (c) A 
= §9° 32’31", 6 = 60°10’ 42”, c= 96° 57’ 25”. (e) A = 140° 42’ 43”, 
b = 41° 2148", C= 125° 4109". (g) a= 23°00’ 32”, B= 101° 36’ 06”, 
ec = 146° 57’ 32”, (3) 104° 14’ 46”. (5) 63° 26’ 36’. (7) 90° 00’ 00”. 

Section 28, page 88. 1 (a) a: = 109° 20’, B, = 57° 40’, Ai = 123° 02’; 
a2 = 14°00’, B. = 122°20’, A:= ies 27. {e)a= MP3s, A=i35 ee, 
B= 90°00’. (e) No solution. 2 (a) a= 162° 54’ 27”, c= 07° 11’ 19”, 
C = 24° 25’ 07”. (c) No solution. ‘(e) Gp —At ae Aiee AS = 128° 57° 32", 
= M9 59 53". “ag = 05714" AS 08 Sr 44’, Bz = 30° 00’ 08”. 

(g) a1 = 150° 40’ 54””, ce, = 41° 08’ 37”, C, = 154° 18" 24". ag= 29°19 08 
C2 = 163° 01’ 29”, C. = 168° 55’ 24”. (3) 15° 57’ 50”. = (5) 0.052. 

Section 30, page 93. 1 (a) A = 61°30’, B = 96° 25’, C = 119° 53’. (c) A 
= 51° 10’, B = 72° 09’, C = 91° 05’... 2 (a) A= G&" 44’ 44", B= 95° 57 77 
¢ = 118° 44’ 09". (ce) a = 24° 1 32", B= 129° 19 20%) C= 1 ie 
(e) A = 44° 07' 24", B= 97° 59’ 56”, C = 118° 5805". (3) 73° 26’. a) 
57° 44’ 48” or 122° ‘15 ip he 

Section 31, pages 93-94. 1 (a) a= 104° 33’, A = 75° 27’, B = 152° 00’. 
(c) A = 50°15’, B= 73°10’, C= 88°20’. (e) a= 31°45’, b = 131° 45’, 
c= 154°00’. (g) a= 74° 37’, b = 128° 46’, c= 74°37’. (i) A = 189° 05’, 
B = 139° 05’, @€ = 139° 05’. 2 (a) A = 23° 02’ 44”, B= 76° 00’ 40”, 
C = 100° 07’ 10". (ce) By, = 157° 28’ 08”, ce, = 176° 01’ 20”, C; = 173° 56’ 52”. 
Bz = 22° 31’ 54”, co = 155° 55’ 20”, C2 = 38° 16’ 48’. (e) A = 161° 22’ 44”, 
B = 135° 04’ 48”, c = 84° 2319”. (g) A = 172° 48’ 30”, B = 110° 37’ 44”, 
ce = 92° 43’22”. () No solution. (k) a = 48° 07’ 26”, 6b = 136° 56’ 05”, 
e = 152° 11’ 39". =(m) a = 25° 28’ 50”, A = 88° 29’ 02”, B= 47° 15’ 52”. 
(o) No. solution. (qj) A= 2) = Cts 4 ae (s)a = 58° 19 ar 
¢ = 97° 54’ 15”, C = 82° 05’ 54”. (u) 6 = 56° 50’ 52”, B = 63° 25’ 04”, 
G = 90° 00’ 00". = (8) 32°28'15”". (5) 37°37’ 38” and 73° 58"38”". (7) 
40° 46’ 28”. 

Section 36, pages 101-102. (8) 415 statute miles. (5) 03° 38’ 19”, 
01° 26’ 52’. (7) 0°, 180°, 20.7 hours, 525 gallons. 

Section 38, pages 106-108. (1) 66° 04’ 48”, 47° 01’ 52”” W. (7) 62° 38’ 22”. 
(9) lat. 87° 45’ N., long. 74° 07’ E. 10 (a) 32.6 nautical miles; 71° 53’ 24”; 
108° 06’ 36’; 48° 20’ 5 03” N. (c) 19.6 nautical miles; 287° 04’ 24”; 252° 55’ 36”; 
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57° 27’ 06” N. 11 (a) Right; 11.746 nautical miles. (c) Left; 14.597 nau- 
tical miles. (e) Left; 184.78 nautical miles. (g) Left; 28.393 nautical miles. 
(13) 49° 21’ 24” N. - 

Section 49, pages 135, 138-139. 2 (a) 232012". (ce) 3 04™ 285, 
4 (a) (1) Alioth, Caph; (2) Pollux, Fomalhaut; (3) Canopus. (c) (1) Polaris; 
(2) Acrux, Dubhe, a Tri. Aust., @ Centauri; (3) none. 5 (a) t= 244; A, = 
120°+ west of north. (c) t= 2344; A, = 45°+ east of north. (e) t= 6'4; 
A, = 135°+ west of north. 6 (a) 270°. (c) 135°4. (7) |lat. — dl < 90°, 
where lat. and d are signed (+ if N., — if S.) 8 (a) Polaris, Kochab. 9 (a) 
South of latitude 30°04’ 8. (e) North of latitude 33°05’ N. (c) North of 
latitude 30° 40’ N. (g) South of latitude 44°04’ S. 10 (a) 4405”, 16* 05”. 
(c) 23% 52™, 114 52™, 

Section 51, pages 142-143. (1) dof same sign as lat., and |d| > 90° — | lat. |. 
(3) Decreases as latitude increases. 4 (a) 60° N., (c) 44° 10’ N. (5) The higher 
the latitude the greater the number of circumpolar stars. |d| > 90° — |lat. |, 
and d and lat. of same sign. 7 (a) 01° 03’ 07” counterclockwise, 18" 01” 10s. 
(c) 01° 32’ 51” clockwise, 5* 55" 19%. 8 (a) 59° 09’ 20S. (c) 50° 59’ 30” S. 
(e) 58° 34’ 40” N. 

Section 53, pages 150-152. (3) 20*34” 56s, 8* 36" 52°, 156%. 4 (a) 
Early April. (c) Late November or early December. 5 (a) 9:10 A.M., 
9°14" 40". (c) 7:20 A.M., 7*39" 00%. 7 (a) 16428" 08". (c) 1% 09” 528. 
9 (a) lat. 35° 44’ 30” S., long. 19° 10’ E.  (c) lat. 09° 56’ S., long. 63° 33’ E. 
(e) lat. 08° 35’ N., long. 88° 29’ W. 10 (a) 15” 05* — 08* fast. 11 (a) Four 
times. Minus for 3 months after Christmas; Plus for next 3 months; 
Minus for following 3 months; Plus for 3 months before Christmas. (b) Twice. 
Minus for 6 months after Christmas; Plus for 6 months before Christmas. 
(c) Four times. (d) During the 6 months straddling Christmas the two 
causes of equation of time are working together; during the other 6 months 
the two causes oppose one another. 

Section 56, pages 162-167. 1 (a) t = 21*00”17%, A, = 128° 15’ 26” east 

of north. (e) lat 14° 55’ 32° N., £= 1409" 09")« (ec) h = 22°.54'02”, 

m3) 53006. westeol south. (2) lats= 39° 55° 16"8., A,— 37° 027 14% 
west of south, or lat. = 80° 39’16” S., A, = 142° 57’ 48” west of south. 
2 (a) 62° 05’ 14” west of south, 13.9 nautical miles. (c) 69° 26’ 42”” west of 
north, 15.4 nautical miles. (e) 53° 19’ 41’’ west of north, 11.9 nautical miles. 
(g) 117° 12’ 00” east of north, 2.7 nautical miles. 3 (a) 2:56:22 P.M. 
(c) 1:06:38 P.M. 4 (a) 5' 41” 17*, 82° 59’ 00” west of south. (c) 2*33™ 04°, 
35° 30’ 13’ west of south. (e) 4*55”44*.5, 63°06’ 00” west of north. 
(g) 5* 59” 595.9, 89° 50’ 00” west of north. (i) 9% 53” 22s, 29° 54’ 00’ west of 
north. 5 (a) 48° 55’ 16” east of north. (c) 43°05’ 50” east of north. 
(e) 75° 42’ 38” east of south. (g) 89° 56’ 58” east of north. (i) No shadow, 

as sun has set. 6 (a) 41° 19’08’ W. (c) 136° 50’ 57” W. (9) 8:45:20 P.M., 

western, 01° 16’ 39” clockwise. 10 (a) 4:22:15 A.M., western, 01° 04’ 59” 

clockwise. (c) 3:55:17 A.M., western, 01° 54’ 15” clockwise. 1 ae) 

55° 56’ 38’ N. (c) 57° 21’ 24” N. or 24° 48’ 52” N. (in which case a bubble 

octant must have been used). (13) 36° 32’ 22’ N.orS. (15) Boston: mean, 

apparent, legal; New York: mean, legal, apparent; Charleston: legal, mean, 

apparent. (17) 8* 59" 54*— 578. (19) 77° 18’ 07” southward or counterclock- 

wise. 20 (a) 3*09” 13%, 34 15” 29*, 3:43:21 A.M. (c) 4*48™ 149, 4% 54” 30°, 
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5:04:50 A.M. 21 (a) lat. 45° 05’ N., long. 93° 30’ W.; Minneapolis, Minn. 
(c) lat. 34° 25’ S., long. 58° 27’ W.; Buenos Aires. 23 (a) 7:45:02 — 05 P.M. 
25 (a) The shadow of such a stick measures the sun’s azimuth; to form a sun- 
dial it should measure the sun’s hour angle. Yes, either terrestrial pole. 
Such a shadow would be of constant direction (west) all morning and of con- 
stant direction (east) all afternoon. (b)----. Local apparent time. 
The ray for n-hours before or after noon must make an angle of n 15° with the 
north line in the face, to the west for morning, to the east for afternoon. 
(c) tan 6, = (sin lat.)(tan n 15°). Usable only in latitudes equal to the 
angle at which the style is inclined to the face. (d) tan 0, = (cos lat.)(tan 
n 15°). Style will point to the depressed pole. Will not be usable the year 
around for points in the torrid zone. (e) 49° 57’ 02”. 

Section 13 (Appendix II), pages 203-204. (1) A = 21° 23' 56”) 
B= 31° 59’ 56”, C = 163° 41’ 14.) (8) 6445.2 nautical miles; 2405 4725 1048 
(5) AB = 2704.9 nautical miles, PB = 1687.4 nautical miles. (7) 
120° 04’ 523”. (9) B = 44° 1209”, A = 144°01’10”. (11) 100° 44’ 05”. 

(13) 18% 55” 12s, 28° 19’ 02’, 972 nautical miles. (15) 222° 40’ 25”, 6111.8 

nautical miles. 
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Addition formulas, 25 
Ageton, Commander A.A., v, 187 
Air Almanac, 118, 234 
Almanacs, 118, 234 
Altitude, 131, 135; definition of, 134; most 

favorable instant for observation of, 
139; observations of for line of position, 
152; sextant observations of for the 
sun, 206; sextant observations of for 
fixed stars, 207; transit observations 
of, 226 

Ambiguous triangles, general, 80, 171; 
right, 59, 172 

Andromeda Nebula, 116 
Angle bisectors, 72 
Angles, between great circles, 33; di- 

hedral, 5, 7; face, 7, 15; of spherical 
triangles, 15; plane, 20; polyhedral, 6; 
spherical, 8; trihedral, 7, 15, 40 

Answers to odd problems, 247 
Aphelion, 126 
Are length, 21 
Areas of spherical triangles, 17, 19 
Aries, 126, 221 
Artificial horizon, 208 
Astronomical triangle, 134, 161 
Azimuth, 131, 135; as a bearing, 212; 

azimuth circle observations of for 
fixed stars, 216; azimuth circle observa- 
tions of for the sun, 217; definition of, 
134; most favorable instant for ob- 
serving, 141; transit observations of, 

227 
Azimuth circle, 134, 212, 215 

Bearings, 212; radio, 231; relative, 213; 
true, 213 

Big Bear, 110 
Big Dipper, 110 
Binnacle, 219, 224 
Bowditch, 95, 198 
Bubble octant, 209 

Cassiopeia, 110, 129 
Celestial sphere, 119 
Check formulas, 48 
Chronometer, 146, 211 
Chronometer watch, 212 
Circles, great, 7, 30, 232; small, 8, 11, 30, 

32; tangent, 12, 142 

Circumpolar stars, 139 
Climate zones, 113 
Compass, 212, 218; bearing, 101, 213; 

cards, 213; deviation, 219; gyro, 219, 
222; magnetic, 214, 218; repeating, 
214, 224; variation, 219 

Constellations, 111, 244; Big Bear, 110; 
Big Dipper, 110; Cassiopeia, 110, 129; 
Orion, 110; ecliptic, 124; Ursa Major, 
110 

Cosecant function, 22 
Cosine function, 21 
Cosine — haversine formula, v 
Cosine law, 27, 188, 190 
Cotangent function, 22 
Course, 100 

Culmination, 139, 243 

Daily sheet, 235, 239, 240 
Day, apparent solar, 147; civil, 146; 

mean solar, 146; sidereal, 111, 148 
Dead reckoning position, 155 
Declination, 128, 135; and terrestrial 

latitude, 152, 244; definition of, 129; 
fixity of for fixed stars, 130; on star 
chart, 244; tabulation of for fixed stars, 
242; tabulation of for sun, moon and 
planets, 239, 240 

Degrees, 20 
Deviation, 219 
Dip, 118, 132, 234 
Directional gyro, 224 
Directions on earth’s surface, 98 

Double-angle formulas, 25 
Dreisonstok, Commander J. Y., v, 189 

Earth, 95 
Ecliptic, 123; constellations of, 124; 

definition of, 124; obliquity of, 115; on 
the star chart, 245 

Edges, of dihedral angles, 5; of polyhe- 
dral angles, 7 

Elongations, of fixed stars, 141, 227; 
tabulation of for Polaris, 243 

Equation of time, 147, 151, 165 
Equator, celestial, 119, 244; terrestrial, 

95 
Equinoctial, 119 
Equinoctial sundial, 166 
Equinox, 126 
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Face angles, 7, 15 
Faces, of dihedral angles, 5; of polyhedral 

angles, 7 
Factor formulas, 26 
Figure-eight diagram, 151 
First Point of Aries, and right ascension, 

128; and sidereal time, 147; definition 
of, 126; fixity of, 126; on star chart, 
244; precession of, 221; tabulation of 
GHA for, 239, 240 

Fixed stars, 109; tabulation of co-ordi- 
nates for, 242 

Formulas: addition, 25; check, 48; cosine- 
haversine, v; double-angle, 25; factor, 
26; half-angle, 26, 191; working, 48 

Geodesics, 29 
Gimbels, 214, 224 
Gnomon, 165 
Great circles: definition of, 7, 30; mini- 
mum distance property of, 30; of radio 
signals, 232 

Greenwich civil time, chronometers for 
recording, 211; definition of, 146; of 
recorded celestial co-ordinates, 234, 
239, 240 

Greenwich hour angle, definition of, 131; 
tabulation of for fT, and the sun, moon 
and planets, 235, 239, 240 

Greenwich meridian, 96 
Gyro compass, 219, 222 
Gyroscope, 219 
Gyroscopic precession, 126, 220 

Half-angle formulas, 26, 191 
Half-angle law, 27 
Haversine, 198 
Haversine laws, 197 
Haversine-sine method, 201 
Head, 213 
Hellweg, Captain J. F., viii, 235 
Homing by radio, 233 
Horizon: artificial, 208; celestial, 132; 

theoretical, 132; visual, 132 
Horizon glass, 206 
Horizontal parallax, 121, 235 
Horizontal sundial, 166 
Hour angle, 131, 185; Greenwich, 131, 

235; local, 131; sidereal, 129, 135, 235, 
242, 244 

Index glass, 205 
Instruments: azimuth circle, 212; bubble 

octant, 209; chronometer, 211; chro- 
nometer watch, 212; compass, 212, 218; 

INDEX 

directional gyro, 224; gyroscope, 219; 
pelorus, 225; radio direction-finder, 
232; sextant, 134, 205; solar attach- 
ment of a transit, 227; theodolite, 226; 
transit, 134, 225 

International date line, 148 
Interpolation, 202, 247; in the Air Alma- 

nac, 238; table of for GHA, 241 
Isosceles spherical triangles, 69 

Jasperson, Commander Robert, E., v 

Knight, Commander Richard H., v 

Latitude, 95, 244 
Leap years, 113 
Level glass, 216 
Level tubes, 226 
Light year, 116 
Limb of a sextant, 205 
Line of position, 157, 160, 232 
Logarithm forms, 55 
Longitude: celestial, 145; terrestrial, 96, 

244 

Loop antenna, 231 
Loxodromes, 99 
Lubber’s line, 214 
Lune, 8, 16 

Magnetic pole, 213, 218 
Mars, 127 
Mercator chart, 154, 156, 232 
Meridian: celestial, 130, 227; Greenwich, 

96; terrestrial, 96 
Meridian altitude observation, 140, 158 
Midnight: apparent, 147; local mean, 146; 

mean, 146 

Mile: land, 35; nautical, 35, 98 
Minimum distances, 29 
Minutes, 20 

Moonrise, 286, 240 
Moonset, 236, 240 

Nadir, 132 
Napier’s analogies, 194 
Napier’s Corollaries 1 and 2, 49; 3and 3 A, 

50 
Napier’s Rules of Circular Parts, 40, 47 
Nautical Almanac, 118, 234 
Nautical mile, 35, 98 
Navigational star chart, 244 
Navigational stars, 235, 242 
Navigation systems: Ageton (H.O. 211), 

v, 187; Dreisonstok (H.O. 208), v, 187; 
Knight and Jasperson (H.O. 214), v; 
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Saint-Hilaire (H.O. 171), v; Weems, v, 
154, 187 

Noon: apparent, 147; local mean, 146; 
mean, 146; sidereal, 148 

North Pole, 96 
Nutation, 130, 221 

Obliquity of the ecliptic, 115 
Octant, 208 

Order of magnitude, 71 
Orion, 110 

Parallax: corrections for, 118, 133; defini- 
tion of, 121; tabulation of for the 
moon, 235, 239 

Parallels of latitude, 96 
Pelorus, 213, 225 
Perihelion, 114, 126, 144, 145 
Perpendicular bisectors, 72 
Perpendicularity: line and plane, 2; be- 

tween two planes, 5 
Phantom, 222 
Pine and birch tree analogy, 112 
Planes: parallel, 1; perpendicular, 5 
Plane trigonometry, 20, 208 
Points of the compass, 214 
Polar, 9 
Polar axis, 228 
Polaris: as a pole star, 109, 220, 221; dis- 

tance from the earth of, 116; table of 
co-ordinates of, 243 

Pole and polar, 16 
Poles: celestial, 119; magnetic, 213, 218; 

north, 96; of great circles, 9, 37; of 
small circles, 12; of spherical triangles, 
17; south, 96; terrestrial, 96 

Pole stars, 221 
Precession: gyroscopic, 

equinoxes, 126, 130, 221 
Primes, 79, 173 
Principle of continuous variation, of an- 

gles, 179; of ares, 173 

220; of the 

Quadrantal spherical triangles, 68 
Quadrant arc, 176 
Quadrant of an angle, 22 

Radian, 21 
Radio bearings, 108, 231 

Radio direction-finder, 231 

Radius of earth, 95 

Refraction, 118, 132, 234 

Relative bearings, 213 

Revolution of the earth, 112 

Rhumb lines, 99 
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Right ascension, 128, 185; definition of, 
129; fixity of for fixed stars, 130; on the 
star chart, 244; tabulation of for fixed 
stars, 235, 242 

Right spherical triangles, 39, 67 
Rotation of the earth, 112 
Rule of Azimuth order, 229 

Saint-Hilaire, Mareq, v 
Seasons, 113 
Secant function, 22 
Semidiameter, 235, 239 
Sexagesimal system, 20 
Sextant, 134, 205 
Sidereal clocks, 148 
Sidereal hour angle, 129, 135; definition 

of, 129; on the star chart, 244; tabula- 
tion of for fixed stars, 235, 242 

Sides of spherical triangles, 15, 32 
Sine function, 21 
Sine law, 26, 106, 188 
Sketching great circles, 35 
Slide rule evaluation, 57 
Small circles, 8, 11, 30, 32; of spherical 

triangles, 17; points outside of, 12; 
poles of, 12 

Solar attachment, 225, 227 
Solar Ephemeris, 227 
Solar telescope, 228 
Solstice, 126 
Solution of Triangles: a.a.a., 74, 88; 

B.6.8., 7D, 10; 2-818. 1D, 80, Li2, Lids 
Shy Min ky Uni is Sy, (ay 185 
8:5.8.,1 (0; 05 

Special right spherical triangles, 39, 64 
Spherical excess, 19 
Standard chronometer, 212 

Star chart, 244 
Stars: chart of, 244; circumpolar, 139; 

culminations of, 139, 243; distances 
from the earth, 116; elongations of, 
141, 227, 243; fixed, 109; navigational, 

235, 242; pole, 221; table of, 242; 

transits of, 139 
Straddled are, 52 
Style, 165 
Subsolar point, 152 
Substellar point, 152 
Sundials, 165 
Sunrise, 236, 240; problems on, 158 

Sunset, 236, 240 

Tables of Logarithms, 247 
Tangent circles on a sphere, 12 
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Tangent function, 22 

Tangent lines on a sphere, 12 

Tangents, law of, 28 

Theodolite, 226 

Time, 109, 143; apparent, 147; apparent 

solar, 145; civil, 146; clock, 146; day- 

light saving, 146, 149; equation of, 147, 

151, 165; Greenwich, 146; Greenwich 

civil, 146, 211, 234; legal, 146, 148; 

local apparent, 145; local civil, 145; 

local sidereal, 146; mean, 145, 150; 

sidereal, 146, 148, 149, 150; standard, 

146; summer, 146, 149; true solar, 145; 

war, 146, 149; watch, 148 

Transit, 134, 225 
Transit of stars, 139 
Transparent mirror, 210 

Triangles: astronomical, 134, 161; gen- 

eral right spherical, 39, 64; general 

spherical, 74; isosceles spherical, 69; 

plane, 17; polar, 14; quadrantal, 68; 

right spherical, 39, 67; special right 

spherical, 39, 64; spherical, 14, 32 

Triangle solution, see Solution of Triangles 

Tropic of Cancer, 115 
Tropic of Capricorn, 115 
True solar time, 145 

INDEX 

Twilight, 236, 240 

Upper culmination, 139 
Upper transit, 139 
Ursa major, 110 

Variation of angles, 179 
Variation of ares, 173 

Vernal equinox, and right ascension, 128; 

and sidereal time, 147; definition of, 

126; fixity of, 126; tabulation of GHA 

for, 239, 240; on the star chart, 244; 

precession of, 221 

Versed sine, 197 

Vertex: of a great-circle course, 103; of a 

polyhedral angle, 7; of a spherical tri- 

angle, 32 
Vertical circle, 133 
Vertical sundial, 166 

Wabe, 166 
Weems, Lieutenant Commander P.V.H., 

v, 154, 187 
Working formulas, 48 

Zenith, 132 
Zones, climate, 113; time, 146, 148, 149 
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